Classifying enset based on their disease tolerance using deep learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.23Keywords:
Deep learning, VGG-19, VGG-16, Enset, CNN.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Even though agriculture remains the main source of Ethiopia’s population economy, not identifying enset based on their disease tolerance level is an obstacle for the production of enset.This paper’s main objective is to automatically identify the disease resistance levels of enset plants through digital image. The researcher followed the design science research method to achieve the objective listed above. Besides, the researcher has attempted to get valuable information about the type and the nature of these classes from the domain expert through interviews, document analysis, and observation from the fields. The total number of images used for experimentation purposes was 3000. The Contaharmonic filtering technique was implemented to remove noise due to its highest entropy recorded. A deep learning-based approach with training from scratch and transfer learning convolutional neural network methods were applied. Based on this, the researcher made experimentation for transfer learning by using two different pre-trained models, namely VGG-19 and VGG-16. Finally, the developed classifier model’s performance was assessed using accuracy, precision, recall, and the F1 score. According to the interpretation of the results, the proposed model’s training from scratch method achieves 92.6%. On the other way, the accuracy obtained with the transfer learning method, VGG-16 achieves 98.5%, and VGG-19 achieves 93.9%. Hence, transfer learning, specifically the VGG-16 model revealed an effective and robust performance for classifying enset based on their disease tolerance level based on the researcher’s number of images.Abstract
How to Cite
Downloads
Similar Articles
- Ganga Gudi, Mallamma V Reddy, Hanumanthappa M, Enhancing Kannada text-to-speech and braille conversion with deep learning for the visually impaired , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Kinjal K. Patel, Kiran Amin, Predictive modeling of dropout in MOOCs using machine learning techniques , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- S. Udhaya Priya, M. Parveen, ETPPDMRL: A novel approach for prescriptive analytics of customer reviews via enhanced text parsing and reinforcement learning , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Dileep Pulugu, Shaik K. Ahamed, Senthil Vadivu, Nisarg Gandhewar, U D Prasan, S. Koteswari, Empowering healthcare with NLP-driven deep learning unveiling biomedical materials through text mining , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Muhammed Jouhar K. K., Dr. K. Aravinthan, An improved social media behavioral analysis using deep learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Thangatharani T, M. Subalakshmi, Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- M. Yamunadevi, P. Ponmuthuramalingam, A review and analysis of deep learning methods for stock market prediction with variety of indicators , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Ritu Nagila, Abhishek Kumar Mishra, Ashish Nagila, Role of big data in enhancing lung cancer prediction and treatment , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Hemamalini V., Victoria Priscilla C, Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

