A machine translation model for abstractive text summarization based on natural language processing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.20Keywords:
Machine translation model, Natural language processing, Summarization, Text.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
“Knowledge is power and knowledge is liberating” conveys that there is a need for the capacity for creativity and that information is plentiful. The key application of natural language processing (NLP) is text summarization. It is a well-known technique for copying text, selecting accurate content, and get insight from the text. The purpose of this study is to propose for providing a summary of the text employing the seq2seq concept from the TensorFlow Python library. Through the use of deep learning-based data augmentation, the suggested method has the potential to increase the effectiveness of the text summary. Finally, the bilingual evaluation understudy (BLEU) criterion is used to judge the effectiveness of the suggested methodologyAbstract
How to Cite
Downloads
Similar Articles
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Shiny Bridgette I, Rexlin Jeyakumari S, An optimal fuzzy inventory model for rice farming using lagrangean method , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rajesh Kumar Sharma, Amrendra Jha, ECOLOGICAL SCREENING OF SHATIYA WETLAND IN RELATION TO AGRICULTURAL PRODUCTIVITY , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- V Anitha, Seema Sharma, R. Jayavadivel, Akundi Sai Hanuman, B Gayathri, R. Rajagopal, A network for collaborative detection of intrusions in smart cities using blockchain technology , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Modenisha U, Ritha W, A mathematical model for sustainable landfill allocation and waste management , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Ritu Nagila, Abhishek Kumar Mishra, Ashish Nagila, Role of big data in enhancing lung cancer prediction and treatment , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Naveena Somasundaram, Vigneshkumar M, Sanjay R. Pawar, M. Amutha, Balu S, Priya V, AI-driven material design for tissue engineering a comprehensive approach integrating generative adversarial networks and high-throughput experimentation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- *HEERA LAXMI JADON, POONAM PRAKASH, SANJEEV PRATAP SINGH, ANTIBACTERIAL ACTIVITY OF NATURAL COMPOUNDS EXTRACTED WITH DIFFERENT SOLVENTS FROM CALOTROPIS PROCERA , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
<< < 19 20 21 22 23 24 25 26 27 28 > >>
You may also start an advanced similarity search for this article.

