A machine translation model for abstractive text summarization based on natural language processing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.20Keywords:
Machine translation model, Natural language processing, Summarization, Text.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
“Knowledge is power and knowledge is liberating” conveys that there is a need for the capacity for creativity and that information is plentiful. The key application of natural language processing (NLP) is text summarization. It is a well-known technique for copying text, selecting accurate content, and get insight from the text. The purpose of this study is to propose for providing a summary of the text employing the seq2seq concept from the TensorFlow Python library. Through the use of deep learning-based data augmentation, the suggested method has the potential to increase the effectiveness of the text summary. Finally, the bilingual evaluation understudy (BLEU) criterion is used to judge the effectiveness of the suggested methodologyAbstract
How to Cite
Downloads
Similar Articles
- Saarumathi R, Ritha W, Impregnable inventory stewardship for a closed loop supply chain besides energy usage, defective production and green investment manoeuvring pentagonal fuzzy number , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Anil Kumar, Aditya Kumar, Synthesis, spectral characterization and antimicrobial effect of Cu(II) complexes of schiff Base Ligand, N-(3,4- dimethoxybenzylidene)-3-aminopyridine (DMBAP) Derived from 3,4-dimethoxybenzaldehyde and 3-aminopyridine , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- S Selvakumari, M Durairaj, Performance Analysis of Deep Learning Optimizers for Arrhythmia Classification using PTB-XL ECG Dataset: Emphasis on Adam Optimizer , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Shapali Devi, Sadguru Prakash, Ravindra Pratap Singh, Rahul Singh, Polylactic Acid: A Bio-Based Polymer as an Emerging Substitute for Plastics , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- S. Bhuvaneswari, A. Nisha Jebaseeli, Multi-model telecom churn prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Renuka Thapliyal, Can Shimla be fitted into the compact city model? , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Suprabha Amit Kshatriya, Jaymin K Bhalani, Fire and smoke detection with high accuracy using YOLOv5 , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Sudheer Choudari, K. Rajasekhar, Ch. Sudheer, Comparative study of the foundation model of a 220 kV transmission line tower with different footing steps - Finite element analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Amudavalli L, K. Muthuramalingam, Integrated energy-efficient routing and secure data management for location-aware wireless sensor networks with PFO leveraged improved fuzzy unequal clustering algorithm (IFUC) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 17 18 19 20 21 22 23 24 25 26 > >>
You may also start an advanced similarity search for this article.

