
Abstract
“Knowledge is power and knowledge is liberating” conveys that there is a need for the capacity for creativity and that information is
plentiful. The key application of natural language processing (NLP) is text summarization. It is a well-known technique for copying text,
selecting accurate content, and get insight from the text. The purpose of this study is to propose for providing a summary of the text
employing the seq2seq concept from the TensorFlow Python library. Through the use of deep learning-based data augmentation, the
suggested method has the potential to increase the effectiveness of the text summary. Finally, the bilingual evaluation understudy
(BLEU) criterion is used to judge the effectiveness of the suggested methodology.
Keywords: Machine translation model, Natural language processing, Summarization, Text.

A machine translation model for abstractive text summarization
based on natural language processing
Bhuvaneshwarri Ilango

RESEARCH ARTICLE

© The Scientific Temper. 2023
Received: 18/07/2023 Accepted: 20/08/2023 Published : 25/09/2023

Department of Information Technology, Government College of
Engineering, Erode, Mettunasuvanpalayam, Tamil Nadu, India.
*Corresponding Author: I. Bhuvaneshwarri, Department of
Information Technology, Government College of Engineering,
Erode, Mettunasuvanpalayam, Tamil Nadu, India, E-Mail: ibw@
gcee.ac.in
How to cite this article: Ilango, B. (2023). A machine translation
model for abstractive text summarization based on natural
language processing. The Scientific Temper, 14(3): 703-707.
Doi: 10.58414/SCIENTIFICTEMPER.2023.14.3.20
Source of support: Nil

Conflict of interest: None.

Introduction
Numerous studies have been done in the field of abstractive
text summarization, although they have always exclusively
looked at neural network-based models. These strategies
can now be used in conjunction with knowledge-based
ones to make them more potent. This research proposes
a sequence-to-sequence neural-based text summarising
technique using the TensorFlow Python library (Gambhir,
and Gupta, 2017). By addressing the problem of uncommon
or out-of-vocabulary phrases, the suggested strategy can
improve the usefulness of deep learning models. The
idea behind is the generalization of content with deep
learning-based summary of text. Many NLP tasks, such as
speech recognition, machine translation, and producing
captions for films, have been carried out using the Seq2seq
paradigm. An encoder and a decoder are the two primary

The Scientific Temper (2023) Vol. 14 (3): 703-707 E-ISSN: 2231-6396, ISSN: 0976-8653

Doi: 10.58414/SCIENTIFICTEMPER.2023.14.3.20 https://scientifictemper.com/

parts of the seq2seq paradigm. The primary responsibility
of the encoder is to encode the context vector in order to
save the data provided by the source text. According to the
encoder’s context vector, the decoder’s task is to generate a
target name for each time step. The core models, however,
were rife with problems, such as wordiness, ambiguity, and
the misuse of specific words in summaries. The attention
mechanism generates an attention vector that aids the
decoder by specifying which parts of the context vector
should be given the most focus while producing a summary
that keeps the context of the original article. The coercive
teaching technique used by the teacher trains the decoder. It
is required that come up with a similar word. The terms in the
articles that need to be taught are thus replaced with words
that have the same meaning with the aid of data additions.
In this method, the words are changed, the total vector of
the article is calculated using the modified sentence, and
the decoder is compelled to produce words with related
meanings. As a result, after the training procedure, the
model contains grammatical sentences and may add
new words to the sentences (Bhuvaneshwarri, 2020 and
Bhuvaneshwarri, 2023).

Related work
NLP-based extractive text summarization was explored
and studied by (Awasthi et al., 2021. Based on linguistic
and statistical criteria, they assessed the implications of
statements.

(Chen et al., 2018) described about text summaries using
a semantic approach. A style transformation method that

704 Bhuvaneshwarri Ilango The Scientific Temper. Vol. 14, No. 3

Foaad Khasmod and colleagues proposed significantly
impacted text transformation. After pre-processing, a tag is
assigned for all words in the text. Following that, each line is
divided into unique, non-overlapping sentence fragments.
Wordnet will be used to check each fragment for possible
replacements. Synsets are part of the lexical database
Wordnet. One or more groupings of synonyms for a specific
lemma make up the synsets. The synonyms of each term are
so examined. Based on its hit rate, each synonym is ranked.
The text is changed to reflect the term with the highest score.

(Mani and Maybury, 1999) discussed sophisticated
methods for automatically summarising material. The current
methodologies and applications in natural language processing
were listed by (Montejo-Ráez and Jiménez-Zafra, 2022).

(Nallapati et al., 2016) have been pointed out several
models for abstractive summarization. The fundamental
model consists of both an encoder and a decoder. It is
constructed with the gated recurrent unit-recurrent neural
network (RNN). The encoder and decoder work in two
directions. This idea has primarily been modified by the
vocabulary of decoder. It only applies to the source file text for
the specified set. This reduces the size of the layer with soft-
max of the decoder. The model is capable of capturing the
primary concepts and entities with the use of extra directory
search with detailed data sets. The language traits are
accurately captured. A generator pointer approach is utilized
to handle the lack of vocabulary terms. Suppose the specified
word is present in the data set of training, the decoder finds
out and then it is considered for further processing; suppose
the specified word not present is noted in the original
document and later used during the compilation of the
summary. All of the aforementioned modifications are made
to the core model in order to produce efficient summaries.

(Radev et al., 2002) highlighted a number of text
summarization-related concerns. For the purpose of
abstractive sentence summarization, (Rush et al., 2015)
created a neural attention model. In their 2017 paper, (Verma
and Lee, 2017) discussed extractive summarization based on
heuristics. (Wazery et al., 2022) talked about utilising deep
learning to summarise Arabic material that is abstract. They
deployed embedded models and measured their models
using four assessment measures.

Deep learning key phrase generation-based seq2seq
model was created by (Zhang and Xiao, 2018). They
presented a design for seq2seq with key phrase generation.
The encoder and decoder was fundamentally designed
with unidirectional and bidirectional gated recurrent units.
This design’s primary goals are to address the summary’s
redundancy and lack of vocabulary words. The copy
technique solves the out of vocabulary (OOV) problem. All
words are divided into two pieces. The 25 most commonly
used words and OOV vocabulary are included in the fixed
vocabulary. In order to pick a word from the specified

vocabulary or to copy the word directly from the source
when producing a summary with soft switch method of
decoder. Repetition is handled via the coverage mechanism.
As a result of the potential for it to be perceived as a frame
of memory, reducing repetition, and the words produced
by a time step will be less similar.

Existing system and its drawbacks
The goal of existing systems and methods for abstractive
text summarizing is to produce brief, coherent summaries
that effectively convey the essential details of the source
text [6-8]. They are as follows:

Transformer-based models
In terms of abstract text summarization, transformer
models like generative pre-trained transformer (GPT) and
bidirectional and auto-regressive transformers (BART) have
produced encouraging results. These models have already
been trained on sizable datasets and are optimized for
particular summarizing tasks.

Pointer-Generator Networks
This method uses a hybrid model that can replicate words
from the source text or create new words, combining
extractive and abstractive methods. The model gains the
ability to choose between creating a term from scratch or
copying one from the input text.

Reinforcement learning
Some methods train the summarization model via
reinforcement learning. The model is first developed
using supervised learning, and it is then improved using
reinforcement learning using incentive signals based on
the ROUGE metric, which assesses the quality of summaries.

Pre-trained language models
The already trained language models similar to bidirectional
encoder representations from transformers (BERT) and text-
to-text transfer transformer (T5) can also be modified for a
summary of tasks. These models’ reliance on the input text to
condition the generation allowed for competitive performance.

The limitations of the aforementioned models and the
potential difficulties in providing overall coherence and
flow in the summary are the main downsides of the current
approach. It frequently includes material from the source
text that is redundant and included in numerous sentences
or paragraphs. Extractive models have trouble summarizing
texts that aren’t complete or coherent.

Proposed System
It is usual to train a model with sequence, which is frequently
based on RNN or transformers, to provide abstractive text
summaries that go beyond simple sentence extraction. As
seen in Figure 1. An encoder plus a decoder make up this
model. The encoder transforms the input source text into

705 NLP based abstractive text summarization

a same and constant size representation while maintaining
contextual information. Then, using the encoded form,
decoder generates the summary. Throughout training, the
model develops the capacity to map the original text to the
desired summary. The review of the original text is provided
with encoder, and using the encoder’s output and the words
that have already been produced, the decoder is taught
to generate the summary word by word. In other models,
like extractive summarization techniques, the summary is
typically created by choosing and concatenating key phrases
or sentences from the raw material. As a result, there may
be a predisposition towards copying and repeating specific
passages from the original text rather than coming up with
fresh, abstract explanations. By creating summaries word
by word, Seq2Seq models get over this problem and enable
more inventive and unique summaries. Because Seq2Seq
models can generate words on the fly, they can successfully
handle OOV words, producing more thorough and precise
summaries. Other models could concentrate on specific
clauses or phrases, but Seq2Seq models consider the whole
document. As a result, their summaries are more logical and
contextually accurate because they are better able to identify
significant linkages and dependencies between phrases.

Procedural steps
The procedural steps are depicted in Figure 2. Initial
user input is usually a text file or other text that needs
to be summarized. Pre-processing involves preparing
the input text for subsequent analysis by removing stop
words, punctuation, and other elements. Another stage
in this process is arranging the text so the summarization
algorithm can process it quickly. The central process, where
the real summarization method functions, is abstractive
summarization. It creates a succinct and cohesive summary
of the given text using sophisticated natural language

processing techniques, such as transformer models or neural
networks. The algorithm creates an abstract summary after
analyzing the input text representation. Post-processing
techniques are applied to the summarized output created
output to improve readability and guarantee grammatical
accuracy. These actions might entail trimming extraneous
words, fixing grammatical problems, and enhancing
the summary’s overall coherence. The user is shown the
abstracted summary of the input text, which is the final result.

System Implementation
Prerequisites
• Access to Google colaboratory requires a Google

account.
• Basic knowledge of Python and deep learning concepts
• A dataset for text summarization (either download

dataset from net or create own dataset)

Installation
• Create a new Python 3 notebook at https://colab.

research.google.com.
• Install the required Python libraries. Run the following

code in the first cell of the notebook:
 !pip install tensorflow==2.4.0; keras==2.4.3;

numpy==1.19.3; pandas==1.1.5;
 nltk==3.5;
• Download the NLTK library
• Import the required libraries. Run the following code:
 import numpy as np
 import pandas as pd
 import re
 from bs4 import BeautifulSoup
 from keras. pre-processing.text import Tokenizer
 from keras.utils import pad_sequences
 from nltk.corpus import stopwords
 from tensorflow.keras.layers import Input,

LSTM, attention, embedding, dense, concatenate, time
distributed from tensorflow.keras.models import model

 from tensorflow.keras.callbacks import Early
Stopping

 import warnings
• Load and pre-process the dataset. This may vary

depending on the format and structure of dataset
• Utilise the Seq2Seq with Attention to build the model

architecture.
• Train the above using the pre-processed dataset.

Module Implementation
The Seq2seq paradigm changes one sequence into another
sequence. In order to circumvent the gradient vanishing
circumstance, recurrent neural networks (RNNs), or more
typically LSTM or gated recurrent unit (GRU), are utilised in
this process. Each item’s context is provided by the output
from the stage before it. In order for RNNs to find abstractive

Figure 1: Seq2Seq with attention

Figure 2: Procedural steps

706 Bhuvaneshwarri Ilango The Scientific Temper. Vol. 14, No. 3

and extractive text summaries and compare them with
various high-level methodologies, this study largely focuses
on adding context as a first step. We employ labeled and
sparsely labeled data to extract it. We train models using
titles and subtitles to quote. Simple RNNs, LSTMs, or GRUs
can be used as the RNNs in the encoder and decoder. Every
hidden state in a straightforward RNN is calculated using the
formula (1) as given below,

Ht(encoder)= ɸ(WHH*Ht-1+WHX*Xt) (1)
where is the hidden states connection matrix of weights,

is the input and the hidden states connection matrix of
weights, ɸ, the activation function, and represents the
hidden states in an encoder. The following can be used to
calculate the decoder’s hidden states in formula (2),

Ht(decoder)= ɸ(WHH*Ht-1) (2)
The first state of the hidden of decoder is the final state

of hidden retrieved from the encoder. The decoder’s output
is presented as follows in formula (3),

Yt= Ht(decoder)*WHY (3)
where WHY is the hidden states connection matrix of

weight with the decoder output.

Working procedure for the implementation of the
proposed system
The following stages are involved in the deployment of a
system for abstractive summary of text using a seq2seq model:

Data Preparation
Summaries of paired source texts and references have
been compiled into a dataset. The data has been cleaned,
tokenized, and fragmented into train, validation, and test
data sets as in pre-processing phase. Vocabulary mappings
have been produced that provide each word or token in the
dataset a distinct numerical index.

Model Architecture
A seq2seq model architecture, such as an LSTM-based or
transformer-based model has been chosen. The model’s
hidden units, layers, and other hyperparameters have all
been determined. The encoder and decoder components
using a deep learning framework like TensorFlow or PyTorch
have been implemented.

Embedding and Input Encoding
The text has been pre-processed by tokenizing it into
words, sub-words, or characters. The input text using the
encoder component, which can consist of multiple LSTM
or Transformer layers has been encoded.

Decoding and Summary Generation
The decoding procedure has been put in place to form the
summary of words. The decoder has been initialized with
the encoded representation and a started hidden state.
Training
The training pipeline using the pre-processed dataset has
been set. A loss function, such as cross-entropy sequence-to-

sequence loss, has been defined to quantify the difference
between the summaries of created and reference pair.

Evaluation
The summary comparison between created and reference
has been evaluated using evaluation criteria such the BLEU
score. Analyze the model’s performance on the validation
set on a regular basis to track development and adjust
hyperparameters as necessary.

Fine-tuning and Optimization
The model using the training dataset specific to the target
summarization task to improve its performance has been
fine-tuned.

Results and Discussion
The seq2seq model of TensorFlow Python’s library is used to
make abstractive text summarization. The effectiveness of
the suggested model is increased by augmenting the data
with deep learning-based text summaries. Figure 3 displays
the developed and correctly trained model. Figure 4 displays
the suggested model’s whole execution sequence.

The outcome is shown in Figure 5. Finally, the system
quality is assessed with the Bilingual Evaluation Understudy

Figure 3: Training

Figure 4: Visualization

707 NLP based abstractive text summarization

Conclusions
A promising method to create summaries that go beyond
simple sentence extraction is abstractive text summarization
using Seq2Seq models. Seq2Seq models, made up of
an encoder and a decoder, develop the ability to map
the source text to the intended summary by gathering
contextual data and producing word-by-word summaries.
These models can successfully manage long-range
relationships, choose crucial information, and produce
coherent and succinct summaries by utilizing techniques like
word embedding, attention mechanisms, and beam search.
In natural language processing, producing a summary of
the abstractive text that captures the essence of the input
content can be challenging. There are many fields in which
abstractive text summarization technology could be used.
Therefore, the future potential is bright. By decreasing the
time consumption, summarization can be enhanced further.

References
Awasthi, I., Gupta, K., Bhogal, P.S., Anand, S.S., Soni, P.K.

(2021). Natural language processing (NLP) based text
summarization-a survey. 6th International Conference on
Inventive Computation Technologies (ICICT) 2021, IEEE:
1310-1317.

Bhuvaneshwarri, I. (2020), Android Geo-Location Based Smart Bus
Ticket Booking System, Iconic Research and Engineering
Journals,7(1):166-169.

Bhuvaneshwarri, I. (2023), Determination of factors affecting stock
market analysis during war, pandemic period using rough
set and scalable future stock market price prediction model,
Gradiva Review Journal, 9(6): 1137-1143.

Chen, P., Wu, F., Wang, T., Ding, W. (2018) A semantic QA-based
approach for text summarization evaluation. In Proceedings
of the AAAI Conference on Artificial Intelligence, 32(1).

Gambhir, M, Gupta, V. (2017). Recent automatic text summarization
techniques: a survey, Artificial Intelligence Review, 47(1):1-66.

Mani, I., Maybury, M.T. (1999), Advances in automatic text
summarization. MIT Press.

Montejo-Ráez, A., Jiménez-Zafra, S.M. (2022). Current Approaches
and Applications in Natural Language Processing, Applied
Sciences, 12(10):4859.

Nallapati, R., Zhou, B., Gulcehre, C., Xiang,B. (2016). Abstractive
text summarization using sequence- to- sequence rnns and
beyond. Proceedings of the 20th SIGNLL Conference on
Computational Natural Language Learning, August 2016,
Berlin, Germany, p. 280-290.

Radev, D.R., Hovy, E., McKeown, K. (2002). Introduction to the
special issue on summarization, Computational linguistics,
28(4): 399-408.

Rush, A.M., Chopra, S., Weston, J. (2015). A neural attention model
for abstractive sentence summarization. arXiv preprint arXiv:
1509.00685.

Verma, R., Lee, D. (2017). Extractive summarization: Limits,
compression, generalized model and heuristics. Computacion
y Sistemas, 21(4): 787- 798.

Wazery, Y.M., Saleh, M.E., Alharbi, A., Ali, A.A. (2022). Abstractive
Arabic text summarization based on deep learning.
Computational Intelligence and Neuroscience.

Zhang, Y., Xiao, W. (2018). Keyphrase generation based on deep
seq2seq model. IEEE Access, (6): 46047-46057.

Figure 5: Result

Figure 6: Accuracy graph

Figure 7: Loss graph

(BLEU) standard. This is depicted in Figures 6 and 7. These
figures unequivocally demonstrate that the test model’s
accuracy is higher than train model and that its loss rate is
lower. It implies that the suggested system achieves effective
abstractive text summarization.

