
Abstract
“Knowledge is power and knowledge is liberating” conveys that there is a need for the capacity for creativity and that information is 
plentiful. The key application of natural language processing (NLP) is text summarization. It is a well-known technique for copying text, 
selecting accurate content, and get insight from the text. The purpose of this study is to propose for providing a summary of the text 
employing the seq2seq concept from the TensorFlow Python library. Through the use of deep learning-based data augmentation, the 
suggested method has the potential to increase the effectiveness of the text summary. Finally, the bilingual evaluation understudy 
(BLEU) criterion is used to judge the effectiveness of the suggested methodology.
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Introduction
Numerous studies have been done in the field of abstractive 
text summarization, although they have always exclusively 
looked at neural network-based models. These strategies 
can now be used in conjunction with knowledge-based 
ones to make them more potent. This research proposes 
a sequence-to-sequence neural-based text summarising 
technique using the TensorFlow Python library (Gambhir, 
and Gupta, 2017). By addressing the problem of uncommon 
or out-of-vocabulary phrases, the suggested strategy can 
improve the usefulness of deep learning models. The 
idea behind is the generalization of content with deep 
learning-based summary of text. Many NLP tasks, such as 
speech recognition, machine translation, and producing 
captions for films, have been carried out using the Seq2seq 
paradigm. An encoder and a decoder are the two primary 
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parts of the seq2seq paradigm. The primary responsibility 
of the encoder is to encode the context vector in order to 
save the data provided by the source text. According to the 
encoder’s context vector, the decoder’s task is to generate a 
target name for each time step. The core models, however, 
were rife with problems, such as wordiness, ambiguity, and 
the misuse of specific words in summaries. The attention 
mechanism generates an attention vector that aids the 
decoder by specifying which parts of the context vector 
should be given the most focus while producing a summary 
that keeps the context of the original article. The coercive 
teaching technique used by the teacher trains the decoder. It 
is required that come up with a similar word. The terms in the 
articles that need to be taught are thus replaced with words 
that have the same meaning with the aid of data additions. 
In this method, the words are changed, the total vector of 
the article is calculated using the modified sentence, and 
the decoder is compelled to produce words with related 
meanings. As a result, after the training procedure, the 
model contains grammatical sentences and may add 
new words to the sentences (Bhuvaneshwarri, 2020 and 
Bhuvaneshwarri, 2023).

Related work
NLP-based extractive text summarization was explored 
and studied by (Awasthi et al., 2021. Based on linguistic 
and statistical criteria, they assessed the implications of 
statements. 

(Chen et al., 2018) described about text summaries using 
a semantic approach. A style transformation method that 
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Foaad Khasmod and colleagues proposed significantly 
impacted text transformation. After pre-processing, a tag is 
assigned for all words in the text. Following that, each line is 
divided into unique, non-overlapping sentence fragments. 
Wordnet will be used to check each fragment for possible 
replacements. Synsets are part of the lexical database 
Wordnet. One or more groupings of synonyms for a specific 
lemma make up the synsets. The synonyms of each term are 
so examined. Based on its hit rate, each synonym is ranked. 
The text is changed to reflect the term with the highest score. 

(Mani and Maybury, 1999) discussed sophisticated 
methods for automatically summarising material. The current 
methodologies and applications in natural language processing 
were listed by (Montejo-Ráez and Jiménez-Zafra, 2022). 

(Nallapati et al., 2016) have been pointed out several 
models for abstractive summarization. The fundamental 
model consists of both an encoder and a decoder. It is 
constructed with the gated recurrent unit-recurrent neural 
network (RNN). The encoder and decoder work in two 
directions. This idea has primarily been modified by the 
vocabulary of decoder. It only applies to the source file text for 
the specified set. This reduces the size of the layer with soft-
max of the decoder. The model is capable of capturing the 
primary concepts and entities with the use of extra directory 
search with detailed data sets. The language traits are 
accurately captured. A generator pointer approach is utilized 
to handle the lack of vocabulary terms. Suppose the specified 
word is present in the data set of training, the decoder finds 
out and then it is considered for further processing; suppose 
the specified word not present is noted in the original 
document and later used during the compilation of the 
summary. All of the aforementioned modifications are made 
to the core model in order to produce efficient summaries. 

(Radev et al., 2002) highlighted a number of text 
summarization-related concerns. For the purpose of 
abstractive sentence summarization, (Rush et al., 2015) 
created a neural attention model. In their 2017 paper, (Verma 
and Lee, 2017) discussed extractive summarization based on 
heuristics. (Wazery et al., 2022) talked about utilising deep 
learning to summarise Arabic material that is abstract. They 
deployed embedded models and measured their models 
using four assessment measures. 

Deep learning key phrase generation-based seq2seq 
model was created by (Zhang and Xiao, 2018). They 
presented a design for seq2seq with key phrase generation. 
The encoder and decoder was fundamentally designed 
with unidirectional and bidirectional gated recurrent units. 
This design’s primary goals are to address the summary’s 
redundancy and lack of vocabulary words. The copy 
technique solves the out of vocabulary (OOV) problem. All 
words are divided into two pieces. The 25 most commonly 
used words and OOV vocabulary are included in the fixed 
vocabulary. In order to pick a word from the specified 

vocabulary or to copy the word directly from the source 
when producing a summary with soft switch method of 
decoder. Repetition is handled via the coverage mechanism. 
As a result of the potential for it to be perceived as a frame 
of memory, reducing repetition, and the words produced 
by a time step will be less similar. 

Existing system and its drawbacks
The goal of existing systems and methods for abstractive 
text summarizing is to produce brief, coherent summaries 
that effectively convey the essential details of the source 
text [6-8]. They are as follows:

Transformer-based models
In terms of abstract text summarization, transformer 
models like generative pre-trained transformer (GPT) and 
bidirectional and auto-regressive transformers (BART) have 
produced encouraging results. These models have already 
been trained on sizable datasets and are optimized for 
particular summarizing tasks.

Pointer-Generator Networks
This method uses a hybrid model that can replicate words 
from the source text or create new words, combining 
extractive and abstractive methods. The model gains the 
ability to choose between creating a term from scratch or 
copying one from the input text.

Reinforcement learning
Some methods train the summarization model via 
reinforcement learning. The model is first developed 
using supervised learning, and it is then improved using 
reinforcement learning using incentive signals based on 
the ROUGE metric, which assesses the quality of summaries.

Pre-trained language models 
The already trained language models similar to bidirectional 
encoder representations from transformers (BERT) and text-
to-text transfer transformer (T5) can also be modified for a 
summary of tasks. These models’ reliance on the input text to 
condition the generation allowed for competitive performance.

The limitations of the aforementioned models and the 
potential difficulties in providing overall coherence and 
flow in the summary are the main downsides of the current 
approach. It frequently includes material from the source 
text that is redundant and included in numerous sentences 
or paragraphs. Extractive models have trouble summarizing 
texts that aren’t complete or coherent.

Proposed System
It is usual to train a model with sequence, which is frequently 
based on RNN or transformers, to provide abstractive text 
summaries that go beyond simple sentence extraction. As 
seen in Figure 1. An encoder plus a decoder make up this 
model. The encoder transforms the input source text into 
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a same and constant size representation while maintaining 
contextual information. Then, using the encoded form, 
decoder generates the summary. Throughout training, the 
model develops the capacity to map the original text to the 
desired summary. The review of the original text is provided 
with encoder, and using the encoder’s output and the words 
that have already been produced, the decoder is taught 
to generate the summary word by word. In other models, 
like extractive summarization techniques, the summary is 
typically created by choosing and concatenating key phrases 
or sentences from the raw material. As a result, there may 
be a predisposition towards copying and repeating specific 
passages from the original text rather than coming up with 
fresh, abstract explanations. By creating summaries word 
by word, Seq2Seq models get over this problem and enable 
more inventive and unique summaries. Because Seq2Seq 
models can generate words on the fly, they can successfully 
handle OOV words, producing more thorough and precise 
summaries. Other models could concentrate on specific 
clauses or phrases, but Seq2Seq models consider the whole 
document. As a result, their summaries are more logical and 
contextually accurate because they are better able to identify 
significant linkages and dependencies between phrases.

Procedural steps 
The procedural steps are depicted in Figure 2. Initial 
user input is usually a text file or other text that needs 
to be summarized. Pre-processing involves preparing 
the input text for subsequent analysis by removing stop 
words, punctuation, and other elements. Another stage 
in this process is arranging the text so the summarization 
algorithm can process it quickly. The central process, where 
the real summarization method functions, is abstractive 
summarization. It creates a succinct and cohesive summary 
of the given text using sophisticated natural language 

processing techniques, such as transformer models or neural 
networks. The algorithm creates an abstract summary after 
analyzing the input text representation. Post-processing 
techniques are applied to the summarized output created 
output to improve readability and guarantee grammatical 
accuracy. These actions might entail trimming extraneous 
words, fixing grammatical problems, and enhancing 
the summary’s overall coherence. The user is shown the 
abstracted summary of the input text, which is the final result.

System Implementation
Prerequisites
• Access to Google colaboratory requires a Google 

account.
• Basic knowledge of Python and deep learning concepts
• A dataset for text summarization (either download 

dataset from net or create own dataset)

Installation
• Create a new Python 3 notebook at https://colab.

research.google.com.
• Install the required Python libraries. Run the following 

code in the first cell of the notebook:
   !pip install tensorflow==2.4.0; keras==2.4.3; 

numpy==1.19.3; pandas==1.1.5; 
    nltk==3.5;
• Download the NLTK library
• Import the required libraries. Run the following code:
   import numpy as np 
   import pandas as pd
   import re
   from bs4 import BeautifulSoup
   from keras. pre-processing.text import Tokenizer 
   from keras.utils import pad_sequences
   from nltk.corpus import stopwords
   from tensorflow.keras.layers import Input, 

LSTM, attention, embedding, dense, concatenate, time 
distributed from tensorflow.keras.models import model

   from tensorflow.keras.callbacks import Early 
Stopping 

  import warnings
• Load and pre-process the dataset. This may vary 

depending on the format and structure of dataset
• Utilise the Seq2Seq with Attention to build the model 

architecture.
• Train the above using the pre-processed dataset.

Module Implementation
The Seq2seq paradigm changes one sequence into another 
sequence. In order to circumvent the gradient vanishing 
circumstance, recurrent neural networks (RNNs), or more 
typically LSTM or gated recurrent unit (GRU), are utilised in 
this process. Each item’s context is provided by the output 
from the stage before it. In order for RNNs to find abstractive 

Figure 1: Seq2Seq with attention

Figure 2: Procedural steps
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and extractive text summaries and compare them with 
various high-level methodologies, this study largely focuses 
on adding context as a first step. We employ labeled and 
sparsely labeled data to extract it. We train models using 
titles and subtitles to quote. Simple RNNs, LSTMs, or GRUs 
can be used as the RNNs in the encoder and decoder. Every 
hidden state in a straightforward RNN is calculated using the 
formula (1) as given below,

Ht(encoder)= ɸ(WHH*Ht-1+WHX*Xt)   (1)
where  is the hidden states connection matrix of weights,  

is the input and the hidden states connection matrix of 
weights, ɸ, the activation function, and represents the 
hidden states in an encoder. The following can be used to 
calculate the decoder’s hidden states in formula (2),

Ht(decoder)= ɸ(WHH*Ht-1)    (2)
The first state of the hidden of decoder is the final state 

of hidden retrieved from the encoder. The decoder’s output 
is presented as follows in formula (3),

Yt= Ht(decoder)*WHY    (3) 
where WHY is the hidden states connection matrix of 

weight with the decoder output.

Working procedure for the implementation of the 
proposed system
The following stages are involved in the deployment of a 
system for abstractive summary of text using a seq2seq model:

Data Preparation
Summaries of paired source texts and references have 
been compiled into a dataset. The data has been cleaned, 
tokenized, and fragmented into train, validation, and test 
data sets as in pre-processing phase. Vocabulary mappings 
have been produced that provide each word or token in the 
dataset a distinct numerical index.

Model Architecture
A seq2seq model architecture, such as an LSTM-based or 
transformer-based model has been chosen. The model’s 
hidden units, layers, and other hyperparameters have all 
been determined. The encoder and decoder components 
using a deep learning framework like TensorFlow or PyTorch 
have been implemented.

Embedding and Input Encoding
The text has been pre-processed by tokenizing it into 
words, sub-words, or characters. The input text using the 
encoder component, which can consist of multiple LSTM 
or Transformer layers has been encoded.

Decoding and Summary Generation
The decoding procedure has been put in place to form the 
summary of words. The decoder has been initialized with 
the encoded representation and a started hidden state.
Training
The training pipeline using the pre-processed dataset has 
been set. A loss function, such as cross-entropy sequence-to-

sequence loss, has been defined to quantify the difference 
between the summaries of created and reference pair.

Evaluation
The summary comparison between created and reference 
has been evaluated using evaluation criteria such the BLEU 
score. Analyze the model’s performance on the validation 
set on a regular basis to track development and adjust 
hyperparameters as necessary.

Fine-tuning and Optimization
The model using the training dataset specific to the target 
summarization task to improve its performance has been 
fine-tuned.

Results and Discussion
The seq2seq model of TensorFlow Python’s library is used to 
make abstractive text summarization. The effectiveness of 
the suggested model is increased by augmenting the data 
with deep learning-based text summaries. Figure 3 displays 
the developed and correctly trained model. Figure 4 displays 
the suggested model’s whole execution sequence. 

The outcome is shown in Figure 5. Finally, the system 
quality is assessed with the Bilingual Evaluation Understudy 

Figure 3: Training

Figure 4: Visualization
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Conclusions
A promising method to create summaries that go beyond 
simple sentence extraction is abstractive text summarization 
using Seq2Seq models. Seq2Seq models, made up of 
an encoder and a decoder, develop the ability to map 
the source text to the intended summary by gathering 
contextual data and producing word-by-word summaries. 
These models can successfully manage long-range 
relationships, choose crucial information, and produce 
coherent and succinct summaries by utilizing techniques like 
word embedding, attention mechanisms, and beam search. 
In natural language processing, producing a summary of 
the abstractive text that captures the essence of the input 
content can be challenging. There are many fields in which 
abstractive text summarization technology could be used. 
Therefore, the future potential is bright. By decreasing the 
time consumption, summarization can be enhanced further.
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Figure 5: Result

Figure 6: Accuracy graph

Figure 7: Loss graph

(BLEU) standard. This is depicted in Figures 6 and 7. These 
figures unequivocally demonstrate that the test model’s 
accuracy is higher than train model and that its loss rate is 
lower. It implies that the suggested system achieves effective 
abstractive text summarization.


