Modified-multi objective firefly optimization algorithm for object oriented applications test suites optimization
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.44Keywords:
Firefly algorithm, Light intensity, Model-based testing, Multi-objective test suites optimizationDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Model-based testing is a crucial but challenging stage of the software development process. The process of model-based testing needsto be optimized, which is a difficult task. In this article, we present an approach for selecting minimum test suites that is based on themeta-heuristic firefly algorithm. We modify the firefly algorithm and define the suitable multi-objective function to optimize the testsuites. The suggested approach uses firefly behavior to address the current issue. The modified approach chooses the best test suitesthat quickly find the maximum coverage in less time.Abstract
How to Cite
Downloads
Similar Articles
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Kurubara Amaresh, M. S. Ganachari, Revanasiddappa Devarinti , Enhancing participant understanding and ethical considerations in clinical trial biospecimen research: Insights from an oncology setting in India , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Harsh Mineshbhai Shah, A literature-based analysis of studies in urban landscape concept , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Rama Rao J.V.G, Raja Gopal A.N.V.J, Ponnaganti S. Prasad, Illa V. Ram, Muthuvel B, Power quality improvement in BLDC motor drive using PFC converter , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- M. Merla Agnes Mary, S. Britto Ramesh Kumar, DAJO: A Robust Machine Learning–Based Framework for Preprocessing and Denoising Fetal ECG Signals , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Nitin Bhone, Nilesh Diwakar, S. S. Chinchanikar, Multi-response optimization for AISI M7 Hard Turning Using the utility concept , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Raghavan Santhanam, P Venugopal, Sreoshi Dasgupta, R. S. Kumar, Saravanan M.P, Ravindra A. Kayande, Analysis of organizational culture and e-commerce adoption in the context of top management perspectives , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Nitin J. Wange, Sachin V. Chaudhari, Koteswararao Seelam, S. Koteswari, T. Ravichandran, Balamurugan Manivannan, Algorithmic material selection for wearable medical devices a genetic algorithm-based framework with multiscale modeling , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Rudrapati Bhuvaneswara Prasad, Avutala Mallikarjuna Reddy, Edge properties of lexicographic product graphs of open neighborhood graphs , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- K. Hima Bindu, How can India strengthen mental health services as part of its efforts to promote holistic wellbeing by 2047 , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
<< < 27 28 29 30 31 32 33 34 35 36 > >>
You may also start an advanced similarity search for this article.

