
Abstract
Model-based testing is a crucial but challenging stage of the software development process. The process of model-based testing needs
to be optimized, which is a difficult task. In this article, we present an approach for selecting minimum test suites that is based on the
meta-heuristic firefly algorithm. We modify the firefly algorithm and define the suitable multi-objective function to optimize the test
suites. The suggested approach uses firefly behavior to address the current issue. The modified approach chooses the best test suites
that quickly find the maximum coverage in less time.
Keywords: Firefly algorithm, Light intensity, Model-based testing, Multi-objective fitness function, Test suites optimization.

Modified-multi objective firefly optimization algorithm for
object oriented applications test suites optimization
Kirti Gupta*, Parul Goyal

RESEARCH ARTICLE

© The Scientific Temper. 2023
Received: 20/07/2023 Accepted: 16/08/2023 Published : 25/09/2023

1Department of Computer Application and Information
Technology, Shri Guru Ram Rai University, Dehradun, Uttarakhand,
India
*Corresponding Author: Kirti Gupta, Department of Computer
Application and Information Technology, Shri Guru Ram Rai
University, Dehradun, Uttarakhand, India, E-Mail: kritikagupta47@
yahoo.co.in
How to cite this article: Gupta, K., Goyal, P. (2023). Modified-
multi objective firefly optimization algorithm for object oriented
applications test suites optimization. The Scientific Temper,
14(3): 845-851.
Doi: 10.58414/SCIENTIFICTEMPER.2023.14.3.44
Source of support: Nil

Conflict of interest: None.

Introduction
Model-based testing is a necessary step in the proper
maintenance of software (Suryanarayan, S., et al., 2021).
Model-based testing is a procedure of retesting a modified
system or piece of software using the old test suite to ensure
that any bug fixes and new features do not negatively impact
any functionality passed down from a prior version. This
means that, while doing model-based testing on a system
that contains the test suite and the changed program, the
program must be validated in relation to test suite (Dang,
X., et al., 2020). This procedure is carried out as a result of
modifications to the business logic, the addition of fresh
requirements, or adjustments to the current system.
Rerunning the test suite consumes a large portion of time
and resources (Hashim, F., et al., 2022). The main difficulties

The Scientific Temper (2023) Vol. 14 (3): 845-851 E-ISSN: 2231-6396, ISSN: 0976-8653

Doi: 10.58414/SCIENTIFICTEMPER.2023.14.3.44 https://scientifictemper.com/

arise from the need to reduce time and expense. Some
methods to address this issue include test suite selection,
optimization, and prioritization (Huang, Y., et al., 2021).

Test suite optimization refers to the process of choosing
test suites that should quickly and cheaply reveal errors
that have gone undiscovered. Additionally, it assists
the system’s productivity and quality control to grow.
It simultaneously cut testing expenses and sped up the
cycle time (Khatibsyarbini, M., et al., 2019). The ant colony
optimization (ACO), genetic algorithm (GA), particle swarm
optimization (PSO), cuckoo search (CS), artificial bee colony
algorithm (ABCA), and others are different optimization
strategies (Mahali, P., et al., 2018; Mehboob, F., et al., 2020).

In order to speed up and lower the expense of model-
based testing, this paper proposes a model-based test
suite optimization approach. Here, a modified-multi
objective firefly algorithm (m-MOFOA) is designed to
obtain an optimal test suite without the test suites being
redundant and to further give maximum coverage in the
shortest amount of time. The article’s remaining sections
are organized as follows: Section 2 explains the material
and methods in more detail using four case studies and
a program namely hospital management system (HMS),
library management system (LMS), social account system
(SAS), hotel management system (HoMS) and triangle
classification problem (TCP) and section 3 discusses the
results and discussion and also compares this approach
with other meta heuristic algorithms that is GA, PSO and a
traditional firefly optimization algorithm (FOA), and section
4 wraps up the study with a conclusion.

846 Kirti Gupta et al. The Scientific Temper. Vol. 14, No. 3

Materials and Methods
This article proposes a novel m-MOFOA technique for test
suite optimization. With the fitness function constructed
using a number of objectives, such as cyclomatic complexity,
activity coverage, and total cost; we used the firefly
algorithm to optimize the test suites. The structural design
of the proposed work is shown in Figure 1.

To maximize many objectives simultaneously, multi-
objective optimization is used. Because traditional
optimization algorithms cannot simultaneously satisfy many
objectives, they cannot produce the best optimal solution
for test suite selection. By choosing the best test suites using
the meta-heuristic firefly optimization technique, a novel
solution to this problem is developed. The flowchart for
modified-multi objective firefly optimization (m-MOFOA)
is shown in Figure 2.

The following mathematical description of the multi-
objective optimization problem serves as the foundation
for the proposed (m-MOFOA) technique:

 eq. 1

From Eq.1 represents a set of multiple objectives
 where identifies a unique solution

to the problem that was resolved.
Following is a mathematical expression of the multiple

objectives:

 eq. 2

From eq. 2, indicates the set of multiple objectives,
 indicates a cyclomatic complexity, indicates

total cost and indicates activity coverage. By using
these constraints, fitness is computed for each firefly (for
each test suite).

Software metrics like cyclomatic complexity (CC) (Panthi,
V., et al., 2017; Reda, N., et al., 2022; Swathi, B., et al., 2020;) are
used to quantify a program’s or an application’s complexity.
The number of independent paths produced by the McCabe
(Panthi, V., et al., 2017; Reda, N., et al., 2022; Swathi, B., et al.,
2020;) Basic path testing approach is equal to the graph’s

cyclomatic complexity. Thomas J. McCabe, Sr. created it in
1976 (Panthi, V., et al., 2017; Reda, N., et al., 2022). It can be
calculated as:

 eq. 3

From eq3, number of edges shows the flow of nodes in
current test suite and the is the number of activity nodes
in the current test suite.

The cost of independent test suite is computed by
adding all weights associated with each node.

 eq.4
 e q . 5

Where in eq. 4 is the total cost of a test suite which can
be computed by eq. 5. In eq. 5 total numbers of outgoing
edges is and total number of incoming edges
is branch weight is and is the Decision
node and total cost of a node is .

When every activity in a UML simplified activity graph
is visited at least once, activity coverage of the simplified
activity graph can be reached.

 eq.6

Activity coverage cost can be computed by using
eq. 6. Where is the total number of activities covered
by each test suite. The sum of activities covered by a test
suite (TS) is represented by and is a
representation of the total number of activities present in
an application.

The objective function in the proposed approach uses
the previously discussed objectives to determine each test
suite’s firefly brightness, the fitness function-equivalent
brightness function has been framed to measure the
optimality of developed test suites or solutions is as follows.

 eq.7

The development of the modified-multi objective firefly
optimization approach was influenced by the fireflies’
behavior of flashing lights. The fireflies are taken as the
test suites. Fireflies are all unisexual. Fireflies are attracted
to other fireflies based on the brightness of their light
(i.e., Brightness is
correlated with the firefly’s attractiveness. The one that is
brighter attracts the firefly with the lowest intensity. The
firefly then moves on to another brighter location with the
highest fitness value. This increases or improves firefly’s
intensity. Also, the firefly with the lowest intensity has a
decreased fitness for the best solutions available right now.
As a result, the brighter one is chosen as the best solution.

Take (test suites) i.e. fireflies
The brightness function BF was then used to determine each
firefly’s intensity, as shown below.Figure 1: Structural design of proposed technique

847 m-MOFOA For object oriented applications

 eq. 8
According to the eq. 8 above, denotes the firefly’s

light intensity. Here, maximum light-intensity firefly attracts
the other one. where but The
attractiveness of the firefly varies depending on the
degree of light it absorbs. The less bright firefly moves
toward the other, brighter firefly depending on the
intensity computation (eq. 8), the higher-brighter firefly is
determined to be the best solution. In addition, less bright
firefly is removed and the position of the firefly is updated
for effectively detecting the best firefly for next iteration
which is expressed as follows,

 eq.9

From the above eq. 9, indicates an updated position
of the firefly, indicates a current position.

This in turns, the test suite optimization is achieved
by proposed m-MOFOA approach. Through the chosen
optimal test suite, the object-oriented application is tested
for enhancing the quality of software.

Flow chart of the proposed m-MOFOA technique
Flow chart for the proposed technique is as follows:
Flowchart 1: Algorithm for the proposed technique
(m-MOFOA) for test suite optimization

Algorithm: modified-Multi Objective Firefly Optimization
Algorithm (m-MOFOA) for Test Suite Optimization
Input: Software under test, Set of test suites in

Output: Optimized Test Suites

START
1. Initialize the firefly (that is test suites) with random position
2. For every in do
3. Compute fitness function using eq. 7
4. if (FF≥TS) then
5. Select test suite as optimal
6. Go to step 19
7. else
8. Compute fitness value of every test suite
9. end if
10. For every firefly in TSi
11. For each firefly ffi belong to
12. For each firefly ffi belong to
13. Using the fitness function FF calculate light intensity I(ffi)

using eq. 8
14.
15. Firefly ffi travels towards ffi
16. end if
17. Optimize the ffi based on their light intensity
18. Select unique ffi based on their FF
19. end for
20. Calculate brightness of each TS using eq. 8
21. Update TSi+1 using eq. 9
22. Return optimized/minimized test suites
23. While the maximum iteration is reached go to step 2
24. end for

EXIT

To test object-oriented applications and improve software
quality, the above (m-MODOA) is used to find the best-
optimized test suites. In accordance with brightness, all
fireflies are then optimized. Up until the maximum iteration,
this process is repeated.

Experimental evaluation of the proposed m-MOFOA
technique
For experimental evaluation of the proposed m-MOFOA
technique, we used real-world case studies and a program
such as HMS, LMS, SAS, HoMS and TCP. Case studies and a
program has 18, 12, 13, 14 and 12 generated test suites and
optimized test suites are 7, 6, 5, 5, and 4 (Figure 3). Here we
have shown in Table 1 case study HMS’s optimized test suites
with their fitness value.

HMS
Table 1 shows the fitness value of each test suite and firefly
on each test suite and last column i.e., the optimized test
suite column, shows the accepted and non-accepted test
suites with their fitness value. According to this fitness value
test suites with low-intensity fitness value and redundant
value of fitness function are not accepted and hence
removed. This case study takes total 18 iterations for the
optimization of test suites. Therefore, Table 1 shows the
fitness value of each test suite and according to their fitness
value optimized test suites are 7 i.e. TS2, TS6, TS9, TS13, TS14,
TS15, and TS18 are selected or optimized for model based
testing of object oriented applications and TS1, TS3, TS4, TS5,
TS7, TS8, TS10, TS11, TS12, TS16 and TS17 are rejected. These
optimized test suites can be represented by the Figure 3.

Results
The two independent parameters used in this experiment
were the four case studies, HMS, LMS, SAS, and HoMS,
one program, TCP, and the test suites produced by these
case studies and program. Four additional dependent

Figure 2: Flow chart of proposed m-MOFOA technique

848 Kirti Gupta et al. The Scientific Temper. Vol. 14, No. 3

parameters, namely computational time, all-activity
coverage percentage, all-edge coverage percentage, and
percentage of test suite rejection, were also assessed during
the experiment. The suggested m-MOFOA approach was
successfully compared to various meta-heuristic approaches
(GA, PSO, and FOA) on four case studies and a program.

Computation Time
Computation time (Ct) is the time required to optimize test
suites for model-based testing. It is expressed in milliseconds
(ms), which is calculated by multiplying the total number of
test suites TSn by the time Time_TS required to select a single
test suite for the optimization process. Table 2 can be used
to display the results.
wCt = TS_n × Time_TS

The performance analysis of computational time for four
techniques with regard to various test suite counts is shown
in Table 3 below. The suggested m-MOFOA technique
effectively cuts the computational time compared to
the other current techniques. The suggested m-MOFOA
technique uses the computational time as 36, 18, and 9ms
for 18 test suites, whereas the existing GA, PSO, and FOA
computational times are roughly 70, 55, and 45 ms for
the 18 test suites. According to the description above, the
m-MOFOA technique reduces the amount of time needed
to choose test suites for MBT testing. The graph is produced
between the values in the following Table 3 and depicted
in Figure 4.

The performance analysis of computational time for the
proposed m-MOFOA technique, current GA, PSO, and FOA
are shown in Figure 4. In the aforementioned figure, various
test suites are used in a total of 18, 12, 13, 14 and 10 runs.
When compared to state-of-the-art works, the experimental
findings of computational time employing the suggested
m-MOFOA technique are significantly shorter. As a result,
compared to current GA, PSO, and FOA techniques, the
time needed to select the best test suites is decreased by
9 to 11 ms.

All-activity coverage percentage
The term “All Activity Coverage Percentage” (AACP) refers
to the percentage of activities that are covered out of all the
activities in an application. It can be calculated by dividing
the total no. of activities covered by optimized test suites
Act_Cov_Opt (TS) by total number of activities Total_Act
present in the application (in %). Table 4 can be used to
display the results.

The comparison of AACPs for the three methods GA, PSO
and FOA and proposed m-MOFOA technique, according
to various test suite numbers that is 18, 12, 13, 14, and 10
is shown in Table 5 below. When compared to three other
techniques, the m-MOFOA technique specifically improves
the percentage of all activities covered. When 18 test suites
were taken into account, the AACP for the existing GA, PSO,
and FOA was 70, 75, and 78%, respectively, whereas the
suggested m-MOFOA technique acquired 93% of the total.
The values in Table 5 are taken into consideration when
creating the graph as Figure 5.

Table 1: Accepted and non-accepted test suites with their fitness
value for HMS

Fireflies Test suites i (ffi) = BF = FF Optimized test suites

FF1 TS1 42.897 Not Accepted

FF2 TS2 68.793 Accepted

FF3 TS3 42.897 Not Accepted

FF4 TS4 114.586 Not Accepted

FF5 TS5 114.586 Not Accepted

FF6 TS6 114.586 Accepted

FF7 TS7 60.897 Not Accepted

FF8 TS8 88.793 Not Accepted

FF9 TS9 135.586 Accepted

FF10 TS10 60.897 Not Accepted

FF11 TS11 88.793 Not Accepted

FF12 TS12 159.483 Not Accepted

FF13 TS13 182.379 Accepted

FF14 TS14 139.586 Accepted

FF15 TS15 122.138 Accepted

FF16 TS16 60.897 Not Accepted

FF17 TS17 88.793 Not Accepted

FF18 TS18 104.691 Accepted

Figure 3: Optimized test suites using proposed m-MOFOA technique

Table 2: Results obtained for Ct values using all case studies and a
program

Case Studies and a Program TSn TSn × Time_TS Ct

HMS 18 180.002 0.036

LMS 12 120.002 0.024

SAS 13 130.002 0.026

HoMS 14 140.002 0.028

TCP 10 100.002 0.020

849 m-MOFOA For object oriented applications

Table 3: Comparison between proposed m-MOFOA technique and
other meta-heuristic techniques for Ct values

Computational time (ms)

Case
studies GA PSO FOA Proposed

m-MOFOA
Ct with
GA

Ct with
PSO

Ct with
FOA

HMS 72 54 45 36 36 18 9

LMS 48 36 30 24 24 12 6

SAS 52 39 33 26 26 13 7

HoMS 56 42 35 28 28 14 7

TCP 40 30 25 20 20 10 5

Figure 4: Performance results of Ct using proposed m-MOFOA and
other meta-heuristic techniques

Table 4: Results obtained for AACP values using all case studies and
a program

Case Studies
and a Program

Act_Cov_
Opt (TS) Total_Act AACP

HMS 27 29 (27/29) × 100% = 93%

LMS 23 26 (23/26) × 100% = 89%

SAS 25 27 (25/27) × 100% = 93%

HoMS 27 30 (27/30) × 100% = 90%

TCP 11 12 (11/12) × 100% = 92%

Table 5: Comparison between proposed m-MOFOA and other meta-heuristic techniques for AACP values

All Activity Coverage Percentage

Case studies GA (%) PSO (%) FOA (%) Proposed m-MOFOA (%) AACP with GA (%) AACP with PSO (%) AACP with FOA (%)

HMS 70 75 78 93 23 18 15

LMS 62 66 70 89 27 23 19

SAS 72 77 79 93 21 16 14

HoMS 68 70 75 90 22 20 15

TCP 69 73 77 92 23 19 1

The performance of the overall AACP is shown in Figure
5. The proposed m-MOFOA technique selects fewer ideal
test suites for activity coverage than previous efforts.
This contributes to a reduction in complexity and an
improvement in application quality. As a result, when
compared to GA, PSO, and FOA, the suggested m-MOFOA
technique’s AACP is increased to about 23, 20, and 15%,
respectively.

All-edge coverage percentage
The term “All edge coverage percentage” (AECP) refers to the
percentage of edges that are covered out of all the edges
in an application. It is calculated by dividing visited edges
in optimized test suites Opt_TS(Vedges) by total number of
edges Tedges present in the application (in %). Table 6 can be
used to display the results.

The comparison of AECPs for the three methods GA, PSO
and FOA and proposed m-MOFOA technique, according
to various test suite numbers that is 18, 12, 13, 14, and 10

is shown in Table 7 below. When 18 test suites were taken
into account, the AECP for the existing GA, PSO, and FOA
was 71, 75, and 79%, respectively, whereas the suggested
m-MOFOA technique acquired 89% of the total. The values
in Table 7 are taken into consideration when creating the
graph as a Figure 6.

The performance of the overall AECP is shown in
Figure 6. The proposed m-MOFOA technique selects
fewer ideal test suites for edge coverage than previous
efforts. This contributes to a reduction in complexity and
an improvement in application quality. As a result, when

Figure 5: Performance results of AACP using proposed m-MOFOA
and other meta-heuristic techniques

Table 6: Results obtained for AECP values using all case studies and
a program

Case Studies and
a program Opt_TS(Vedges) Tedges AECP

HMS 45 51 (45/51) × 100% = 89%

LMS 38 40 (38/40) × 100% = 95%

SAS 42 48 (42/48) × 100% = 94%

HoMS 45 50 (45/50) × 100% = 90%

TCP 26 30 (26/30) × 100% = 87%

850 Kirti Gupta et al. The Scientific Temper. Vol. 14, No. 3

PTSR = ((TS - TS’)/TS) × 100%

The results analyzed for the PTSR based on different test
suite counts utilizing four techniques, suggested m-MOFOA,
the existing GA, PSO, and FOA, are shown in Table 9 below.
It is evident from the result analysis that, when compared to
other techniques already in use, the suggested m-MOFOA
technique enhances the percentage of test suite rejection
rate. The suggested m-MOFOA technique’s test suite
rejection rate was found to be 62, 50, 63, 65, and 50%,
compared to existing GA’s rejection rate of 44, 32, 46, 50,
and 30%, existing PSO’s rejection rate of 45, 35, 48, 52, and
33%, and FOA’s rejection rate of 50, 42, 52, 55, and 40%. The
values in Table 9 are taken into consideration when creating
the graph as Figure 7.

Based on the number of test suites, 18, 12, 13, 14, and 10,
Figure 7 displays the performance results of the PTSR. As a
result, the m-MOFOA technique increases the PTSR by about
17, 18, and 10% compared to traditional GA, PSO, and FOA.

Table 7: Comparison between proposed m-MOFOA and other meta-heuristic techniques for AECP values

All-Edges Coverage Percentage

Case Studies GA (%) PSO (%) FOA (%) Proposed m-MOFOA(%) AECP with GA(%) AECP with PSO(%) AECP with FOA(%)

HMS 71 75 79 89 18 14 10

LMS 73 76 82 95 22 19 13

SAS 72 74 78 94 22 20 16

HoMS 68 70 76 90 22 20 14

TCP 62 69 73 87 25 18 14

Figure 6: Performance results of AECP using proposed m-MOFOA
and other meta-heuristic techniques

Table 8: Results obtained for PTSR values using all case studies and
a program

Case Studies
and a Program Opt(TS) TSn (TSn – Opt(TS)) PTSR

HMS 7 18 (18-7) =11 (11/18) × 100% = 62%

LMS 6 12 (12-6) = 6 (6/12) × 100% = 50%

SAS 5 13 (13-5) = 8 (8/13) × 100% = 63%

HoMS 5 14 (14-5) = 9 (9/14) × 100% = 65%

TCP 5 10 (10-5) = 5 (5/10) × 100% = 50%

Table 9: Comparison between proposed m-MOFOA and other meta-heuristic techniques for PTSR values

Percentage of test suite rejection

Case studies GA (%) PSO(%) FOA(%) Proposed m-MOFOA (%) PTSR with GA (%) PTSR with PSO (%) PTSR with FOA

HMS 44 45 50 62 18 17 12

LMS 32 35 42 50 18 15 8

SAS 46 48 52 63 17 15 11

HoMS 50 52 55 65 15 13 10

TCP 30 33 40 50 20 17 10

Figure 7: Performance results of PTSR using proposed m-MOFOA
and other meta-heuristic techniques

compared to GA, PSO, and FOA, the suggested m-MOFOA
technique’s AECP is increased to about 24, 20, and 15%,
respectively.

Percentage of test suite rejection
The term “percentage of test suite rejection” (PTSR) refers
to the percentage of test suites that have been rejected
from the total number of generated test suites. To get this,
subtract the total number of optimized test suites TS’ from
the total number of test suites TS, and then divide the result
by the overall percentage of test suites. Table 8 can be used
to display the results.

851 m-MOFOA For object oriented applications

Discussion
In comparison to state-of-the-art approaches, the results
reveal that the m-MOFOA approach boosts the test suite
rejection percentage by 12%, the activity and edge coverage
percentage by 19 and 16%, and the computation time by
11%, respectively.

Conclusion
The suggested m-MOFOA approach for test suite
optimization helps achieve “multi-objective optimization”
by reducing the redundancy ratio, reducing test suite
size and time, and improving activity and edge coverage
percentage. The goal of future study might be to apply
the current research to a variety of industrial case studies
in order to evaluate its effectiveness and usefulness based
on other criteria.

Acknowledgments
We appreciate the systemic research department staff’s
assistance in various ways up until this study was finished
satisfactorily. The Computer Application and Information
Technology Department at Shri Guru Ram Rai University in
Dehradun provided support for this study.

References
Suryanarayan, S., & Singh, S., P. (2021). Flower Pollination Algorithm

for Effective Test Case Optimization in Software Testing.
International Journal of Engineering and Advanced Technology,
9(1), 4711-4716, doi: 10.35940/ijeat.A1983.109119.

Dang, X., Yao, X., Gong, D., Tian, T., & Sun, B. (2020). Multi-Task
Optimization-Based Test Data Generation for Mutation
Testing via Relevance of Mutant Branch and Input

Variable. IEEE Access. 8, 144401–144412. doi: 10.1109/
ACCESS.2020.3014290.

Hashim, F., A., Houssein, E., H., Hussain, K., & Mabrouk, M., S. (2022).
Honey Badger Algorithm : New metaheuristic algorithm for
solving optimization problems. Math. Comput. Simul. 192,
84–110. doi: 10.1016/j.matcom.2021.08.013.

Huang, Y., Shu, T., & Ding, Z. 2021. A Learn-to-Rank Method for
Model-Based Regression Test Case Prioritization. IEEE Access.
9, 16365–16382. doi: 10.1109/ACCESS.2021.3053163.

Khatibsyarbini, M., Isa, M. A., D., N., A., Jawawi, H., Hamed, N., A.,
& Mohamed, Suffian, M., D. (2019). Test Case Prioritization
Using Firefly Algorithm for Software Testing. IEEE Access. 7,
132360–132373. doi: 10.1109/ACCESS.2019.2940620.

Mahali, P. & Mohapatra, D., P. (2018). Model based test case
prioritization using UML behavioural diagrams and
association rule mining. International Journal System
Assurance Engineering Management. doi: 10.1007/s13198-
018-0736-7.

Mehboob, F., & Rauf, A. (2020). Evaluating the Optimized Mutation
Analysis Approach in Context of Model-Based Testing. 2–7.

Panthi, V., & Mohapatra, D., P. (2017). ACO based embedded system
testing using UML Activity Diagram. IEEE. 237–242. doi:
10.1109/TENCON.2016.7847997.

Reda, N., Hamdy, A., & E., Rashed, A. (2022). Multi-Objective
Adapted Binary Bat for Test Suite Reduction. doi: 10.32604/
iasc.2022.019669.

Sahoo, R., K., Satpathy, S., Sahoo, S., & Sarkar, A. (2021). Model driven
test case generation and optimization using adaptive cuckoo
search algorithm. Innovative System Software Engineering. doi:
10.1007/s11334-020-00378-z.

Swathi, B., & Tiwari, H. (2020). Genetic algorithm approach to
optimize test cases. SSRG International Journal Engineering
Trends Technology. 68, 112–116. doi: 10.14445/22315381/
IJETT-V68I10P219.

