Modified-multi objective firefly optimization algorithm for object oriented applications test suites optimization
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.44Keywords:
Firefly algorithm, Light intensity, Model-based testing, Multi-objective test suites optimizationDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Model-based testing is a crucial but challenging stage of the software development process. The process of model-based testing needsto be optimized, which is a difficult task. In this article, we present an approach for selecting minimum test suites that is based on themeta-heuristic firefly algorithm. We modify the firefly algorithm and define the suitable multi-objective function to optimize the testsuites. The suggested approach uses firefly behavior to address the current issue. The modified approach chooses the best test suitesthat quickly find the maximum coverage in less time.Abstract
How to Cite
Downloads
Similar Articles
- Anurag Tripathi, Histoenzymological Distribution of Acetylcholinesterase in the Rostral Mesencephalic Torus Semicircularis and Tegmental Nuclei of an Indian air Breathing Teleost Heteropneustes fossilis , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- N. Sasirekha, R. Anitha, Vanathi T, Umarani Balakrishnan, Automatic liver tumor segmentation from CT images using random forest algorithm , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sabeerath K, Manikandasaran S. Sundaram, BTEDD: Block-level tokens for efficient data deduplication in public cloud infrastructures , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Munawara Banu, M. Mohamed Surputheen, M. Rajakumar, Bio-Inspired and Machine Learning-Driven Multipath Routing Protocol for MANETs Using Predictive Link Analytics , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Neha Saini, Pallavi Upadhyay, Naitik Bhardwaj, Indra Rautela, Ashmita Bhatt, Nishima Sharma, Jyoti Barthwal, Prity Kumari, Naveen Gaurav, Establishment of in vitro Shoot Induction and an Evaluation of Antioxidant and Phytochemical Properties of Mucuna pruriens , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Abhishek Pandey, V Ramesh, Puneet Mittal, Suruthi, Muniyandy Elangovan, G.Deepa, Exploring advancements in deep learning for natural language processing tasks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Moyliev Gayrat, Yunuskhodjaev Akhmadkhodja, Saidov Saidamir, Babakhanov Otabek, Mirsultanov Jakhongir, To study references and analysis of an experimental model for skin burns in rats , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Nalini. S, Ritha. W, Sasitharan Nagapan, Economic Order Quantity under Perishability: Analytical and Iterative Approaches to Cost Minimization , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- N. Ruba, A. S. A. Khadir, Session password Blum–Goldwasser cryptography based user three layer authentication for secured financial transaction , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Kanthalakshmi S, Nikitha M. S, Pradeepa G, Classification of weld defects using machine vision using convolutional neural network , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 24 25 26 27 28 29 30 31 32 33 > >>
You may also start an advanced similarity search for this article.

