Tracking and control of power oscillation dampings in transmission lines using PV STATCOM
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.06Keywords:
PV System, Solar System, STATCOM, Power Oscillation Damping, PV STATCOMDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This paper proposed a new control of PV solar system as a FACTS device STATCOM, called PV-STATCOM, for power oscillation damping (POD) in transmission systems. In this proposed control, as soon as power oscillations due to a system disturbance are detected, the solar farm briefly discontinues its real power generation function and makes its entire inverter capacity available to operate as a STATCOM for POD. As soon as power oscillations are damped, the solar farm restores real power output to its pre-disturbance level while keeping the damping function activated. This results in much faster restoration than that specified in grid codes. During the nighttime, the solar farm performs POD with its entire inverter capacity. The proposed control system provides a significant increase in power transfer capacity on a 24/7 basis in systems that exhibit both local inertial and inter-area oscillatory modes. The developed PV-STATCOM is about 50–100 times cheaper than an equivalent STATCOM for providing POD at the same location. This new control method provides more savings for transmission utilities and opens up a new revenue-making opportunity for solar farmsAbstract
How to Cite
Downloads
Similar Articles
- A. Sandanasamy, P. Joseph Charles, Distributed SDN control for IoT networks: A federated meta reinforcement learning solution for load balancing , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- R. Thiagarajan, S. Prakash Kumar, Performance of public transport appraisal using machine learning , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Brigith Gladys L, Merline Vinotha J, Sustainable fuzzy rough multi-objective multi-route cold transportation model with traffic flow and route constraints , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Suprabha Amit Kshatriya, Jaymin K Bhalani, Fire and smoke detection with high accuracy using YOLOv5 , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Neetu Singh, Ravindra Kumar Singh, Diazinon Effect on Behavior and Morphology of Catfish Clarias batrachus (Linnaeus, 1758) , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Partha Majumdar, Empowering skill development through generative AI bridging gaps for a sustainable future , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Kritika Gautam, Anitha Arvind, Neha Kapur, Mukesh Kumar, The keratometry changes pre and post-applanation tonometry , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- M. S. Rajani Kanth, P. Guru Murthy, P. Srikanth, Nature’s Management - Life beyond death , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Hariini Chandramohan, Sethu Gunasekaran, Comparative analysis on the photocatalytic activity of titania and silica nanoparticles using dye discoloration and contact angle test , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
<< < 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Jonnakuti V. G. Rama Rao, Muthuvel Balasubramanian, Chaladi S. Gangabhavani, Mutyala A. Devi, Kona D. Devi, A TLBO algorithm-based optimal sizing in a standalone hybrid renewable energy system , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper

