Tracking and control of power oscillation dampings in transmission lines using PV STATCOM
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.06Keywords:
PV System, Solar System, STATCOM, Power Oscillation Damping, PV STATCOMDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This paper proposed a new control of PV solar system as a FACTS device STATCOM, called PV-STATCOM, for power oscillation damping (POD) in transmission systems. In this proposed control, as soon as power oscillations due to a system disturbance are detected, the solar farm briefly discontinues its real power generation function and makes its entire inverter capacity available to operate as a STATCOM for POD. As soon as power oscillations are damped, the solar farm restores real power output to its pre-disturbance level while keeping the damping function activated. This results in much faster restoration than that specified in grid codes. During the nighttime, the solar farm performs POD with its entire inverter capacity. The proposed control system provides a significant increase in power transfer capacity on a 24/7 basis in systems that exhibit both local inertial and inter-area oscillatory modes. The developed PV-STATCOM is about 50–100 times cheaper than an equivalent STATCOM for providing POD at the same location. This new control method provides more savings for transmission utilities and opens up a new revenue-making opportunity for solar farmsAbstract
How to Cite
Downloads
Similar Articles
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Santhanalakshmi M, Ms Lakshana K, Ms Shahitya G M, Enhanced AES-256 cipher round algorithm for IoT applications , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- M. Iniyan, A. Banumathi, The WBANs: Steps towards a comprehensive analysis of wireless body area networks , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Enhanced LSTM for heart disease prediction in IoT-enabled smart healthcare systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Brijesh Pathak, Estimation of Polonium Contents in Soil and Plants , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Ganga Gudi, Mallamma V Reddy, Hanumanthappa M, Enhancing Kannada text-to-speech and braille conversion with deep learning for the visually impaired , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Rahul, Naveen Sharma, Thermosolutal Instability of Couple Stress Rivlin Ericksen Ferromagnetic Fluid with Rotation, Magnetic and Variable Gravity Field in Porous Medium , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Harjinderpal Singh Kalsi, To Monitor Real-time Temperature and Gas in an Underground Mine Wireless on an Android Mobile , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Desai Vishesh, Ritesh Patel, Assessing the influence of tax refunds and incentives on personal tax Reporting: A qualitative perspective , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Anju Panwar, Satyendra Kumar, Charu Tyagi, Charu Tyagi, Yougesh Kumar, Impact of Experimental Immunisation on Leucocyte Count of Clarias batrachus , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Jonnakuti V. G. Rama Rao, Muthuvel Balasubramanian, Chaladi S. Gangabhavani, Mutyala A. Devi, Kona D. Devi, A TLBO algorithm-based optimal sizing in a standalone hybrid renewable energy system , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper

