Performance analysis of compressive sensing and reconstruction by LASSO and OMP for audio signal processing applications
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.1.28Keywords:
Orthogonal Matching Pursuit, Sparse approximation, Audio Signal Processing, Least Square Method, Compressive sensing, IoT node, LASSODimensions Badge
Issue
Section
Audio signal processing is used in acoustic IoT sensor nodes which have limitations in data storage, computation speed, hardware size and power. In most audio signal processing systems, the recovered data constitutes far less fraction of the sampled data providing scope for compressive sensing (CS) as an efficient way for sampling and signal recovery. Compressive sensing is a signal processing technique in which a sparse approximated signal is reconstructed at the receiving node by a signal recovery algorithm, using fewer samples compared to traditional sampling methods. It has two main stages: sparse approximation to convert the signal into a sparse domain and reconstruction through sparse signal recovery algorithms. Recovery algorithms involve complex matrix multiplication and linear equations in sampling and reconstruction, increasing the computational complexity and leading to highly resourceful hardware implementations. This work reconstructs the sparse audio signal using LASSO and orthogonal matching pursuit (OMP) algorithm. OMP is an iterative greedy algorithm involving least square method that takes a compressed signal as input and recovers it from the sparse approximation, while LASSO is L1 norm based with a controlled L2 penalty. The paper reviews the reconstruction and study of sparsity and error obtained for reconstructing an audio signal by OMP and LASSO.Abstract
How to Cite
Downloads
Similar Articles
- Sweta Jain, Jacob Joseph Kalapurackal, Green Innovation, Pressure, Green Training, and Green Manufacturing: Empirical evidence from the Indian apparel export industry , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- P. Rathinabhagya, J. Merline Vinotha, Fuzzy vehicle routing problem for a municipal solid waste management system with greenhouse gas emission at various disposal stages , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Arunima Dey, Kankana Ghosh, Debangana Chakrabarti, Mahul Brahma, Re-envisioning the mainstream: A study on the acceptance of LGBTQIA+ Protagonists on a Bengali OTT platform , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Neeraj, Anita Singhrova, A critical review of blockchain-based authentication techniques , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Rita Ganguly, Dharmpal Singh, Rajesh Bose, The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Bayelign Abebe Zelalem, Ayalew Ali Abebe, Financial strategy and private commercial banks’ profitability in the emerging market: Evidence from Ethiopia , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- S. Mohamed Iliyas, M. Mohamed Surputheen, A.R. Mohamed Shanavas, Trust-based symmetric game theory for physical layer security in wi-fi communication , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- R. Thiagarajan, S. Prakash Kumar, Performance of public transport appraisal using machine learning , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Aarthi Monalisa M, Anli Suresh, Adoptive bancassurance models transforming patronization among the insured , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Jyoti Kataria, Himanshi Rawat, Himani Tomar, Naveen Gaurav, Arun Kumar, Azo Dyes Degradation Approaches and Challenges: An Overview , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
<< < 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.

