Performance analysis of compressive sensing and reconstruction by LASSO and OMP for audio signal processing applications
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.1.28Keywords:
Orthogonal Matching Pursuit, Sparse approximation, Audio Signal Processing, Least Square Method, Compressive sensing, IoT node, LASSODimensions Badge
Issue
Section
Audio signal processing is used in acoustic IoT sensor nodes which have limitations in data storage, computation speed, hardware size and power. In most audio signal processing systems, the recovered data constitutes far less fraction of the sampled data providing scope for compressive sensing (CS) as an efficient way for sampling and signal recovery. Compressive sensing is a signal processing technique in which a sparse approximated signal is reconstructed at the receiving node by a signal recovery algorithm, using fewer samples compared to traditional sampling methods. It has two main stages: sparse approximation to convert the signal into a sparse domain and reconstruction through sparse signal recovery algorithms. Recovery algorithms involve complex matrix multiplication and linear equations in sampling and reconstruction, increasing the computational complexity and leading to highly resourceful hardware implementations. This work reconstructs the sparse audio signal using LASSO and orthogonal matching pursuit (OMP) algorithm. OMP is an iterative greedy algorithm involving least square method that takes a compressed signal as input and recovers it from the sparse approximation, while LASSO is L1 norm based with a controlled L2 penalty. The paper reviews the reconstruction and study of sparsity and error obtained for reconstructing an audio signal by OMP and LASSO.Abstract
How to Cite
Downloads
Similar Articles
- M. Menaha, J. Lavanya, Crop yield prediction in diverse environmental conditions using ensemble learning , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sruthy M.S, R. Suganya, An efficient key establishment for pervasive healthcare monitoring , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Samara Ahmed, Adil E. Rajput, Denial, acceptance and intervention in society regarding female workplace bullying - A mental health study on social media , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Kunal Lanjekar, Prashant Kalshetti, Joe C. Lopez, Role of social media in lead generation , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- J. M. Aslam, K. M. Kumar, Enhancing security of cloud using static IP techniques , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Anuj Kumar, R C Vishwakarma, K Sunita, Exploring Novel Panorama Within Plant-microbe Interface , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- P. Susai Raj, A. Edward William Benjamin, Evaluating the effectiveness of academic resilience intervention for at-risk students at higher secondary level , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- O. Devipriya, K. Kungumaraj, Enhancing cloud efficiency: an intelligent virtual machine selection and migration approach for VM consolidation , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.

