Performance analysis of compressive sensing and reconstruction by LASSO and OMP for audio signal processing applications
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.1.28Keywords:
Orthogonal Matching Pursuit, Sparse approximation, Audio Signal Processing, Least Square Method, Compressive sensing, IoT node, LASSODimensions Badge
Issue
Section
Audio signal processing is used in acoustic IoT sensor nodes which have limitations in data storage, computation speed, hardware size and power. In most audio signal processing systems, the recovered data constitutes far less fraction of the sampled data providing scope for compressive sensing (CS) as an efficient way for sampling and signal recovery. Compressive sensing is a signal processing technique in which a sparse approximated signal is reconstructed at the receiving node by a signal recovery algorithm, using fewer samples compared to traditional sampling methods. It has two main stages: sparse approximation to convert the signal into a sparse domain and reconstruction through sparse signal recovery algorithms. Recovery algorithms involve complex matrix multiplication and linear equations in sampling and reconstruction, increasing the computational complexity and leading to highly resourceful hardware implementations. This work reconstructs the sparse audio signal using LASSO and orthogonal matching pursuit (OMP) algorithm. OMP is an iterative greedy algorithm involving least square method that takes a compressed signal as input and recovers it from the sparse approximation, while LASSO is L1 norm based with a controlled L2 penalty. The paper reviews the reconstruction and study of sparsity and error obtained for reconstructing an audio signal by OMP and LASSO.Abstract
How to Cite
Downloads
Similar Articles
- Minas M. Ali, Farah H. Alenezi, Nora F. Alfayyadh, Sara Y. Alhassoun, Rahaf M. Alanzi, Waseem Radwan, Conservative esthetic dentistry in Riyadh – Saudi Arabia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Maysam A. Khabisi, Azar B. Masoudzade, Neda F. Rad, On the effectiveness of receiving teacher and peer feedback as a mediator on Iranian English as a Foreign Language learners’ writing skill: Mobile-mediated vs. direct instruction , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- B. Nivedetha, Water Quality Prediction using AI and ML Algorithms , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.

