Performance analysis of compressive sensing and reconstruction by LASSO and OMP for audio signal processing applications
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.1.28Keywords:
Orthogonal Matching Pursuit, Sparse approximation, Audio Signal Processing, Least Square Method, Compressive sensing, IoT node, LASSODimensions Badge
Issue
Section
Audio signal processing is used in acoustic IoT sensor nodes which have limitations in data storage, computation speed, hardware size and power. In most audio signal processing systems, the recovered data constitutes far less fraction of the sampled data providing scope for compressive sensing (CS) as an efficient way for sampling and signal recovery. Compressive sensing is a signal processing technique in which a sparse approximated signal is reconstructed at the receiving node by a signal recovery algorithm, using fewer samples compared to traditional sampling methods. It has two main stages: sparse approximation to convert the signal into a sparse domain and reconstruction through sparse signal recovery algorithms. Recovery algorithms involve complex matrix multiplication and linear equations in sampling and reconstruction, increasing the computational complexity and leading to highly resourceful hardware implementations. This work reconstructs the sparse audio signal using LASSO and orthogonal matching pursuit (OMP) algorithm. OMP is an iterative greedy algorithm involving least square method that takes a compressed signal as input and recovers it from the sparse approximation, while LASSO is L1 norm based with a controlled L2 penalty. The paper reviews the reconstruction and study of sparsity and error obtained for reconstructing an audio signal by OMP and LASSO.Abstract
How to Cite
Downloads
Similar Articles
- Poonam Sharma, Anindita S.Chaudhuri, Subhash Anand, Ankur Srivastava, Ashutosh Mohanty , Pravin Kokne, Measuring the relationship of land use land cover, normalized difference vegetation index and land surface temperature in influencing the urban microclimate in northeast Delhi, India , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Amita Gupta, A study of the scientific approach inherited in the Indian knowledge system (IKS) , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sampa Mondal, Nilanjana Chatterjee, Baibaswata Bhattacharjee, Positive impact of using α-Fe2O3 nanoparticles as dietary supplements on some hematological parameters of an economically important minor carp Labeo bata (Hamilton, 1822) , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sampa Mondal, Baibaswata Bhattacharjee, Tweaking of the morphological pattern in copper sulphide nanoparticles: How does it affect the optical properties? , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Monalisha Paul, Chaitali Kundu, Rudranil Bhowmik, Sanmoy Karmakar, Sandip K. Sinha, Nilanjana Chatterjee, The potential impression of fructo-oligosaccharides and zinc oxide nano composite against nicotine influenced cardiovascular changes , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- K. Kalaiselvi, M. Kasthuri, Tuning VGG19 hyperparameters for improved pneumonia classification , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sudheer Choudari, K. Rajasekhar, Ch. Sudheer, Comparative study of the foundation model of a 220 kV transmission line tower with different footing steps - Finite element analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- A. Sathya, M. S. Mythili, MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- D. Padma Prabha, C. Victoria Priscilla, A combined framework based on LSTM autoencoder and XGBoost with adaptive threshold classification for credit card fraud detection , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 19 20 21 22 23 24 25 26 27 28 > >>
You may also start an advanced similarity search for this article.

