Performance analysis of compressive sensing and reconstruction by LASSO and OMP for audio signal processing applications
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.1.28Keywords:
Orthogonal Matching Pursuit, Sparse approximation, Audio Signal Processing, Least Square Method, Compressive sensing, IoT node, LASSODimensions Badge
Issue
Section
Audio signal processing is used in acoustic IoT sensor nodes which have limitations in data storage, computation speed, hardware size and power. In most audio signal processing systems, the recovered data constitutes far less fraction of the sampled data providing scope for compressive sensing (CS) as an efficient way for sampling and signal recovery. Compressive sensing is a signal processing technique in which a sparse approximated signal is reconstructed at the receiving node by a signal recovery algorithm, using fewer samples compared to traditional sampling methods. It has two main stages: sparse approximation to convert the signal into a sparse domain and reconstruction through sparse signal recovery algorithms. Recovery algorithms involve complex matrix multiplication and linear equations in sampling and reconstruction, increasing the computational complexity and leading to highly resourceful hardware implementations. This work reconstructs the sparse audio signal using LASSO and orthogonal matching pursuit (OMP) algorithm. OMP is an iterative greedy algorithm involving least square method that takes a compressed signal as input and recovers it from the sparse approximation, while LASSO is L1 norm based with a controlled L2 penalty. The paper reviews the reconstruction and study of sparsity and error obtained for reconstructing an audio signal by OMP and LASSO.Abstract
How to Cite
Downloads
Similar Articles
- Minas M. Ali, Farah H. Alenezi, Nora F. Alfayyadh, Sara Y. Alhassoun, Rahaf M. Alanzi, Waseem Radwan, Conservative esthetic dentistry in Riyadh – Saudi Arabia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sudheer Choudari, K. Rajasekhar, Ch. Sudheer, Comparative study of the foundation model of a 220 kV transmission line tower with different footing steps - Finite element analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Senthil Murugan C, Vijayabalan Dhanabal, Sukumaran D, Suresh G, Senthilkumar P, Analysis of distributions using stochastic models with fuzzy random variables , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Venkatesh R, A study on women empowerment by enhancing saving capabilities – through self-help groups , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Shashank Suman, Prashant Kumar, Seasonal Estimation in Primary Productivity of Akilpur Lake in Dighwara, Saran (Bihar) , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Muthuvel Balasubramanian, Jonnakuti V. G. Rama Rao, Surya C. P. R. Sanaboina, Vavilala Venkatesh, Amalodbhavi Sanaboina, Tracking and control of power oscillation dampings in transmission lines using PV STATCOM , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Parismita Bhagawati, Paramita Dey, Animal cruelty legislation in India: A green criminological exploration , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.