Comparative Water Quality Analysis in Beso River in District Jaunpur, Azamgarh and Ghazipur Uttar Pradesh
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2021.12.1.11Keywords:
ppm, significant data, site of sampling (S1, S2, S3), μ S/cm,Dimensions Badge
Issue
Section
The Beso River originates from village Shahapur in District Jaunpur and enters in District Azamgarh after Jaigaha and finally merges into river Ganga in District Ghazipur Uttar Pradesh. It flows south-eastward for almost 95 km only through three districts of eastern Uttar Pradesh. The sample has been collected from three sites indicated by S. S1 from Lakhmapur Jaunpur, S2 from Lalganj Azamgarh, and S3 from Jakhania Ghazipur. The sample has been collected five times i.e. in May, August, November, January, and March on the second Sunday of the month in the year 2020-2021. During tabulation of data five reading from each sample have taken and bio statistically analyzed by students T-test for all parameters for all times and only significant data have been considered. The mean value for the pH as 7.4 Ammoniac Nitrogen as 66.0 ppm, Temperature as 28.660C, B.O.D 235.33 C.O.D 271, Free CO2 260 ppm TDS as 543.33ppm, Cu 2.47 ppm, Iron Total as 2.09 ppm Zinc 6.46 ppm, Cr 3.58ppm, Phenolic Compounds as 5.36 ppm and Conductivity as 373.73 μ S/cm. have been measured by implication of different techniques. During the investigation, only Cu and total Iron values are measured lower to normal while other parameters reported high to normal values. Overall all physiochemical data indicate the water quality tends to be increased polluted as river move to Sangam from Ganga. Yet the water quality of Beso is many times better than River Sai and GomatiAbstract
How to Cite
Downloads
Similar Articles
- Raja Selvaraj, Manikandasaran S. Sundari, EAM: Enhanced authentication method to ensure the authenticity and integrity of the data in VM migration to the cloud environment , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Umadevi, S. Ranganathan, IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sabeerath K, Manikandasaran S. Sundaram, BTEDD: Block-level tokens for efficient data deduplication in public cloud infrastructures , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- V Vijayaraj, M. Balamurugan, Monisha Oberai, Machine learning approaches to identify the data types in big data environment: An overview , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sahaya Jenitha A, Sinthu J. Prakash, A general stochastic model to handle deduplication challenges using hidden Markov model in big data analytics , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Raja Selvaraj, Manikandasaran S Sundaram, ECM: Enhanced confidentiality method to ensure the secure migration of data in VM to cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.