Comparative Water Quality Analysis in Beso River in District Jaunpur, Azamgarh and Ghazipur Uttar Pradesh
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2021.12.1.11Keywords:
ppm, significant data, site of sampling (S1, S2, S3), μ S/cm,Dimensions Badge
Issue
Section
The Beso River originates from village Shahapur in District Jaunpur and enters in District Azamgarh after Jaigaha and finally merges into river Ganga in District Ghazipur Uttar Pradesh. It flows south-eastward for almost 95 km only through three districts of eastern Uttar Pradesh. The sample has been collected from three sites indicated by S. S1 from Lakhmapur Jaunpur, S2 from Lalganj Azamgarh, and S3 from Jakhania Ghazipur. The sample has been collected five times i.e. in May, August, November, January, and March on the second Sunday of the month in the year 2020-2021. During tabulation of data five reading from each sample have taken and bio statistically analyzed by students T-test for all parameters for all times and only significant data have been considered. The mean value for the pH as 7.4 Ammoniac Nitrogen as 66.0 ppm, Temperature as 28.660C, B.O.D 235.33 C.O.D 271, Free CO2 260 ppm TDS as 543.33ppm, Cu 2.47 ppm, Iron Total as 2.09 ppm Zinc 6.46 ppm, Cr 3.58ppm, Phenolic Compounds as 5.36 ppm and Conductivity as 373.73 μ S/cm. have been measured by implication of different techniques. During the investigation, only Cu and total Iron values are measured lower to normal while other parameters reported high to normal values. Overall all physiochemical data indicate the water quality tends to be increased polluted as river move to Sangam from Ganga. Yet the water quality of Beso is many times better than River Sai and GomatiAbstract
How to Cite
Downloads
Similar Articles
- Amudavalli L, K. Muthuramalingam, Integrated energy-efficient routing and secure data management for location-aware wireless sensor networks with PFO leveraged improved fuzzy unequal clustering algorithm (IFUC) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- M. Iniyan, A. Banumathi, Brower blowfish nash secured stochastic neural network based disease diagnosis for medical WBAN in cloud environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Aruljothi Rajasekaran, Jemima Priyadarsini R., ECDS: Enhanced Cloud Data Security Technique to Protect Data Being Stored in Cloud Infrastructure , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sabeerath K, Manikandasaran S. Sundaram, ESPoW: Efficient and secured proof of ownership method to enable authentic deduplicated data access in public cloud storage , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, The role of big data in transforming human resource analytics: A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Manpreet Kaur, Shweta Mishra, A smart grid data privacy-preserving aggregation approach with authentication , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Archana G, Vijayalakshmi V, Improving classification precision for medical decision systems through big data analytics application , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Avdhesh Kumar, Manoj Agarwal, Studies on challenges and opportunities for foreign direct investment in the automobile industry in India , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Priya Nandhagopal, Jayasimman Lawrence, ETTG: Enhanced token and tag generation for authenticating users and deduplicating data stored in public cloud storage , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.