Comparative Water Quality Analysis in Beso River in District Jaunpur, Azamgarh and Ghazipur Uttar Pradesh
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2021.12.1.11Keywords:
ppm, significant data, site of sampling (S1, S2, S3), μ S/cm,Dimensions Badge
Issue
Section
The Beso River originates from village Shahapur in District Jaunpur and enters in District Azamgarh after Jaigaha and finally merges into river Ganga in District Ghazipur Uttar Pradesh. It flows south-eastward for almost 95 km only through three districts of eastern Uttar Pradesh. The sample has been collected from three sites indicated by S. S1 from Lakhmapur Jaunpur, S2 from Lalganj Azamgarh, and S3 from Jakhania Ghazipur. The sample has been collected five times i.e. in May, August, November, January, and March on the second Sunday of the month in the year 2020-2021. During tabulation of data five reading from each sample have taken and bio statistically analyzed by students T-test for all parameters for all times and only significant data have been considered. The mean value for the pH as 7.4 Ammoniac Nitrogen as 66.0 ppm, Temperature as 28.660C, B.O.D 235.33 C.O.D 271, Free CO2 260 ppm TDS as 543.33ppm, Cu 2.47 ppm, Iron Total as 2.09 ppm Zinc 6.46 ppm, Cr 3.58ppm, Phenolic Compounds as 5.36 ppm and Conductivity as 373.73 μ S/cm. have been measured by implication of different techniques. During the investigation, only Cu and total Iron values are measured lower to normal while other parameters reported high to normal values. Overall all physiochemical data indicate the water quality tends to be increased polluted as river move to Sangam from Ganga. Yet the water quality of Beso is many times better than River Sai and GomatiAbstract
How to Cite
Downloads
Similar Articles
- Rasheedha A, Santhosh B, Archana N, Sandhiya A, Foot sens - foot pressure monitoring systems , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Sawitri Devi, Raj Kumar, Unveiling scholarly insights: A bibliometric analysis of literature on gender bias at the workplace , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Thilagavathi K, Thankamani K., P. Shunmugapriya, D. Prema, Navigating fake reviews in online marketing: Innovative strategies for authenticity and trust in the digital age , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Adedotun Adedayo F, Odusanya Oluwaseun A, Adesina Olumide S, Adeyiga J. A, Okagbue, Hilary I, Oyewole O, Prediction of automobile insurance fraud claims using machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Kalpana Deshmukh, Aparna Dighe, Harshal Raje, Impact of mindfulness-based programs on reducing stress and enhancing academic performance in college students , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. Bhuvaneswari, A. Nisha Jebaseeli, Multi-model telecom churn prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Poojith K. D. P, Somashekhara ., Dasharatha P. Angadi, Assessing the impact of cyclonic storm Tauktae on shoreline change in Mangaluru coast using geospatial technology , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Farheen Najma B, Faseeha Begum, Resistance to digital banking by senior citizens in India - A review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Abhishek Pandey, V Ramesh, Puneet Mittal, Suruthi, Muniyandy Elangovan, G.Deepa, Exploring advancements in deep learning for natural language processing tasks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Azar Bagheri Masoudzade, Maryam Ebrahim Nezhad, Appraising social class dimensions on learning motivation of Iranian students: Family studies and their status in focus , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.