Comparative Water Quality Analysis in Beso River in District Jaunpur, Azamgarh and Ghazipur Uttar Pradesh
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2021.12.1.11Keywords:
ppm, significant data, site of sampling (S1, S2, S3), μ S/cm,Dimensions Badge
Issue
Section
The Beso River originates from village Shahapur in District Jaunpur and enters in District Azamgarh after Jaigaha and finally merges into river Ganga in District Ghazipur Uttar Pradesh. It flows south-eastward for almost 95 km only through three districts of eastern Uttar Pradesh. The sample has been collected from three sites indicated by S. S1 from Lakhmapur Jaunpur, S2 from Lalganj Azamgarh, and S3 from Jakhania Ghazipur. The sample has been collected five times i.e. in May, August, November, January, and March on the second Sunday of the month in the year 2020-2021. During tabulation of data five reading from each sample have taken and bio statistically analyzed by students T-test for all parameters for all times and only significant data have been considered. The mean value for the pH as 7.4 Ammoniac Nitrogen as 66.0 ppm, Temperature as 28.660C, B.O.D 235.33 C.O.D 271, Free CO2 260 ppm TDS as 543.33ppm, Cu 2.47 ppm, Iron Total as 2.09 ppm Zinc 6.46 ppm, Cr 3.58ppm, Phenolic Compounds as 5.36 ppm and Conductivity as 373.73 μ S/cm. have been measured by implication of different techniques. During the investigation, only Cu and total Iron values are measured lower to normal while other parameters reported high to normal values. Overall all physiochemical data indicate the water quality tends to be increased polluted as river move to Sangam from Ganga. Yet the water quality of Beso is many times better than River Sai and GomatiAbstract
How to Cite
Downloads
Similar Articles
- Surender Singh, Rachna Thakur, Suchitra Devi, Globalization and Indian Negotiation on Agriculture , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Milindkumar N. Dandale, Amar P. Yadav, P. S. K. Reddy, Seema G. Kadu, Madhusudana T, Manthan S. Manavadaria, Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine utilizing graph neural network approach for predicting cellular responses , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Maria D. Roopa, Nimitha John, Bayesian Optimization Phase I Design of Experiment Models , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sruthy M.S, R. Suganya, An efficient key establishment for pervasive healthcare monitoring , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Anjani Kumar Shukla, Sadguru Prakash, Enzymes as Biomarkers of Pollution Stress in Channa punctatus (Bloch 1793) collected from Sawan nallaha, Balrampur, U.P. , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Harjinderpal Singh Kalsi, To Monitor Real-time Temperature and Gas in an Underground Mine Wireless on an Android Mobile , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Deo Narayan, C. D. Agashe, K. D. Verma, Impact of Different Individual Games on Selected Personality Traits , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Purnendu B. Acharjee, Bhupaesh Ghai, Muniyandy Elangovan, S. Bhuvaneshwari, Ravi Rastogi, P. Rajkumar, Exploring AI-driven approaches to drug discovery and development , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Raja Pathak, Shweta Kumari, An investigation on the impact of vedic mathematics on higher secondary school student’s ability to expand mathematical units , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.