Feature Selection Techniques for IOT Crop Yield Prediction Using Smart Farming Sensor Data
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2026.17.1.12Keywords:
IoT agriculture, crop yield prediction, feature selection, smart farming sensors, SHAP, whale optimization, binary PSO, stochastic gates, contextual feature selectionDimensions Badge
Issue
Section
License
Copyright (c) 2026 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Feature selection plays a critical role in Internet-of-Things (IoT)–based crop-yield prediction due to the presence of heterogeneous, redundant and context-dependent variables derived from soil, climate, management and remote-sensing sources. High-dimensional smart-farming data often degrades generalization performance and increases inference cost, limiting deployment on edge devices. A comprehensive comparative analysis of five feature-selection families: filter, wrapper, embedded, bio-inspired and deep learning–based is conducted using the Smart Farming Sensor Data for Yield Prediction dataset. Fifteen representative methods are evaluated under identical preprocessing, repeated cross-validation and non-parametric significance testing. Embedded SHAP-based selection reduces root mean squared error from 1242.3 to 1186.7 and mean absolute error from 1072.3 to 1030.4 while retaining only 12 features, achieving the strongest accuracy–efficiency trade-off. Bio-inspired multi-strategy whale optimization attains the highest compression, eliminating up to 97.7% of features with competitive RMSE values near 1175 under linear and ensemble regressors. Yield-regime discrimination improves substantially, with distance-correlation filtering and SHAP-select achieving peak AUC–ROC values of 0.571 and 0.560, respectively. Paired Wilcoxon signed-rank tests confirm statistically significant improvements for wrapper and embedded methods (p < 0.05). Results demonstrate that importance-driven embedded selection and multi-objective bio-inspired optimization are well suited for accurate, interpretable and edge-deployable IoT crop-yield analytics.Abstract
How to Cite
Downloads
Similar Articles
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Deepa Ramachandran VR VR, Kamalraj N, Hybrid deep segmentation architecture using dual attention U-Net and Mask-RCNN for accurate detection of pests, diseases, and weeds in crops , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Nithya R, Kokilavani T, Joseph Charles P, Multi-objective nature inspired hybrid optimization algorithm to improve prediction accuracy on imbalance medical datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Lakshmi Priya, Anil Vasoya, C. Boopathi, Muthukumar Marappan, Evaluating dynamics, security, and performance metrics for smart manufacturing , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- J. Fathima Fouzia, M. Mohamed Surputheen, M. Rajakumar, Hybrid pigeon optimization-based feature selection and modified multi-class semantic segmentation for skin cancer detection (HPO-MMSS) , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Chaotic-based optimization, based feature selection with shallow neural network technique for effective identification of intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Isreal zewide, Abde S. Hajigame, Wondwosen Wondimu, Kibinesh Adimasu, Response of Bread Wheat (Triticum aestivum L.) Varieties to Blended NPSB Fertilizer Levels in Sori Saylem District, South-West Ethiopia , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

