
Abstract
Feature selection plays a critical role in Internet-of-Things (IoT)–based crop-yield prediction due to the presence of heterogeneous, 
redundant and context-dependent variables derived from soil, climate, management and remote-sensing sources. High-dimensional 
smart-farming data often degrades generalization performance and increases inference cost, limiting deployment on edge devices. 
A comprehensive comparative analysis of five feature-selection families: filter, wrapper, embedded, bio-inspired and deep learning–
based is conducted using the Smart Farming Sensor Data for Yield Prediction dataset. Fifteen representative methods are evaluated 
under identical preprocessing, repeated cross-validation and non-parametric significance testing. Embedded SHAP-based selection 
reduces root mean squared error from 1242.3 to 1186.7 and mean absolute error from 1072.3 to 1030.4 while retaining only 12 features, 
achieving the strongest accuracy–efficiency trade-off. Bio-inspired multi-strategy whale optimization attains the highest compression, 
eliminating up to 97.7% of features with competitive RMSE values near 1175 under linear and ensemble regressors. Yield-regime 
discrimination improves substantially, with distance-correlation filtering and SHAP-select achieving peak AUC–ROC values of 0.571 
and 0.560, respectively. Paired Wilcoxon signed-rank tests confirm statistically significant improvements for wrapper and embedded 
methods (p < 0.05). Results demonstrate that importance-driven embedded selection and multi-objective bio-inspired optimization 
are well suited for accurate, interpretable and edge-deployable IoT crop-yield analytics.
Keywords: IoT agriculture, crop yield prediction, feature selection, smart farming sensors, SHAP, whale optimization, binary PSO, 
stochastic gates, contextual feature selection.
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Introduction
Smart farming systems increasingly rely on IoT sensor 
networks and decision-support pipelines to monitor soil 
and microclimate conditions and to forecast crop yield at 
the farm scale (Aarif et al. 2025). Yield prediction supports 
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irrigation scheduling, fertilizer planning, market logistics 
and risk management (Ajith et al. 2025). However, IoT 
datasets are typically noisy and heterogeneous, mixing 
continuous sensor variables (soil moisture, temperature, 
rainfall, humidity), management inputs (irrigation type, 
fertilizer type, pesticide usage), remote-sensing proxies 
(NDVI) and spatiotemporal metadata (latitude–longitude 
and timestamps) (Samutrak & Tongkam 2024). Such data 
often includes redundancy and multicollinearity (e.g., 
humidity and rainfall; NDVI and sunlight hours), as well 
as context-dependent relevance where predictors matter 
differently across regions, crop types and irrigation regimes 
(Rodríguez et al. 2025).

Feature selection addresses these issues by identifying 
a compact subset of informative features, improving 
generalization, interpretability and deployment efficiency 
(Cheng 2025). Classical filter and wrapper methods remain 
widely used due to simplicity and effectiveness, but recent 
work emphasizes robust and context-aware selection (Liyew 
2025). Conditional Stochastic Gates (c-STG) explicitly models 
context-dependent feature relevance using conditional 
Bernoulli gates predicted from context variables (Sristi et 
al. 2023). Knockoff-based gate networks such as DeepPIG 
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integrate stochastic gating with a knockoff framework to 
improve detection power while controlling false discoveries 
(Oh et al. 2024). In parallel, bio-inspired metaheuristics such 
as multi-strategy and multi-objective whale optimization 
variants continue to improve subset search and compression 
in high-dimensional settings (Zhou et al. 2025).

Problem Definition
IoT-based crop yield prediction involves high-dimensional, 
heterogeneous sensor data with substantial redundancy, 
multicollinearity and noise, which degrades generalization 
performance and limits deployment on resource-constrained 
systems. Existing studies lack a unified and statistically 
grounded comparison of feature-selection methods, 
making it unclear which techniques best balance accuracy, 
robustness, interpretability and computational efficiency.

Scope of the Paper
This paper conducts a controlled evaluation of representative 
filter, wrapper, embedded, bio-inspired and deep learning 
based feature selection methods for IoT-driven crop yield 
prediction using consistent preprocessing and validation 
protocols. The scope includes quantitative performance 
analysis, statistical significance testing and SHAP-based 
interpretability assessment, while excluding real-time 
deployment and multi-crop generalization.

Related Work
Recent research on feature selection for IoT-based crop 
yield prediction in smart farming has advanced through 
hybrid wrappers, bio-inspired optimizers, embedded 
methods and explainable AI integrations, addressing 
high-dimensional sensor data challenges like redundancy 
and context-dependency (Shawon et al. 2025). Hybrid 
approaches combining correlation-based filters with 
recursive feature elimination (RFE) or neural transformations 
have improved model efficiency. For instance, a study 
proposes ET-DPFS, blending correlation feature selection 
with neural networks to reduce extraction time to 0.816 
seconds and boost XGBoost accuracy to 87% on crop yield 
datasets. Another framework integrates K-means clustering, 
CFS and FMIG-RFE with ICOA-optimized SVR, enhancing 
prediction by eliminating irrelevant soil/weather features 
while minimizing hyperparameters tuning overhead (Hukare 
et al. 2025). 

Hybrid methods merging filters like random forest 
importance with wrappers such as grey wolf-chaotic dung 
beetle optimization reduce high-dimensional IoT data while 
diversifying subsets. PMC study introduces HMF-W, using 
RF-FIM for initial pruning followed by mSMMI and HGW-
CDBW wrappers with process optimization mechanism, 
outperforming baselines on omics-like agronomic 
datasets. Another study develops HMLCWFS for paddy 
yield, combining backward elimination, stepwise forward 

selection, feature importance, exhaustive FS and gradient 
boosting to select key features from paddy datasets (Shi et 
al. 2025). Bio-inspired algorithms like whale optimization 
variants and particle swarm optimization continue to excel 
in compressing IoT sensor features for edge deployment. A 
recent study introduces multi-strategy whale optimization 
for feature subset search, achieving high compression with 
competitive RMSE on agronomic data. Dual-encoding binary 
PSO, as explored in recent open-access works, balances 
sparsity and accuracy in heterogeneous farming datasets 
by probabilistic thresholding (Wang et al. 2026). 

Bio-inspired wrappers frame selection as multi-objective 
optimization for sparse, accurate subsets in smart farming. 
Bajer et al. explore bio-inspired wrappers, analyzing 
metric choices like fitness functions for feature subsets in 
agriculture, showing metric selection impacts convergence 
and sparsity (Bajer et al. 2022). Embedded methods using 
tree importance, SHAP, or ElasticNet sparsity provide 
robust selection integrated with regressors like XGBoost. 
BorutaSHAP-style shadow-feature testing, highlighted in 
reviews, identifies all-relevant predictors while controlling 
false discoveries in noisy IoT streams. Ensemble learning 
with effective data preprocessing, uses feature importance 
ranking to predict yields, outperforming baselines in RMSE 
and R² on multi-sensor inputs (Tripathi et al. 2025). 

Multi-objective wrappers balance accuracy, sparsity 
and computation for edge-deployable models. A wrapper 
methods optimizing multiple objectives like error and 
feature count, suitable for IoT yield tasks. VD proposes 
XAI-enhanced XGBoost with filter-wrapper hybrid RF-PSO 
for Mizoram precision agriculture crop recommendation, 
improving interpretability and selection via particle swarm 
(VD et al. 2025). Deep proxies like conditional stochastic 
gates (c-STG) and knockoff-based DeepPIG enable context-
adaptive gating for varying agronomic regimes.  Naseer 
et al. applies XAI (SHAP/LIME) in precision agriculture for 
interpretable yield forecasting from IoT sensors, improving 
trust in feature contributions. AutoNFS-style end-to-end 
differentiable masking, combined with physics-aware 
ensembles, enhances generalization by embedding crop-
specific constraints (Naseer et al. 2025). 

XAI tools like SHAP integrate with embedded selection 
for transparent yield models from heterogeneous sensors. 
Mohan et al. (2025) in Frontiers apply AI-XAI with SHAP/LIME 
on CNNs for climate-resilient yield prediction, revealing soil 
moisture and temperature as top contributors (Mohan et al. 
2025). Rezek et al. uses XAI-ML for soil nutrient prediction in 
cabbage farming, employing SHAP for feature attribution 
in precision agriculture IoT setups (Rezek et al. 2025). IoT-
integrated selection for smart farming emphasizes real-time 
efficiency. Nemati et al. discuss sensor fusion with hybrid 
selection for precision yield models, stressing scalability 
for soil/moisture inputs (Nemati et al. 2024). IoT-focused 
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selection handles real-time sensor fusion. Bouarourouet et 
al. deploys AI-IoT for crop prediction, using embedded FS 
for nutrient/irrigation optimization. They introduce GA-gray 
wolf hybrids with ANN for classification-grade selection in 
agriculture, enhancing yield proxies via swarm intelligence 
(Bouarourouet al. 2024). 

Materials and Methods

Dataset and target
The Smart Farming Sensor Data for Yield Prediction dataset 
includes sensor and management variables with yield in 
kg/ha as the target (Atharva 2025). Continuous variables 
cover soil conditions and climate, while categorical variables 
encode agronomic choices (crop type, irrigation, fertilizer 
type, disease status, region).

Feature-selection methods 
Figure 1 presents a comprehensive taxonomy of feature 
selection techniques for IoT-based crop yield prediction, 
systematically organizing existing methods into five 
major families based on their selection philosophy and 
optimization strategy. Filter-based feature selection includes 
univariate statistical filters such as Pearson and Spearman 
correlation, mutual information and ANOVA F-test, along 
with neighborhood- and interaction-aware methods like 
ReliefF variants and dependency-based measures such as 
distance correlation and Hilbert–Schmidt Independence 
Criterion. Wrapper-based feature selection relies on 
predictive-model feedback and encompasses sequential 
search strategies, including sequential forward, backward 
and floating selection, recursive feature elimination using 
Random Forest or XGBoost and shadow-feature–based 
all-relevant approaches such as Boruta and BorutaSHAP-

style methods. Embedded feature selection integrates 
selection within model training through regularization-
based techniques such as LASSO and ElasticNet, tree-based 
importance measures from Random Forest and gradient 
boosting and attribution-driven approaches using SHAP 
or permutation importance. Bio-inspired feature selection 
formulates subset selection as a combinatorial optimization 
problem, employing swarm-intelligence methods such as 
particle swarm optimization, binary and dual-encoding 
PSO, whale optimization algorithms and advanced multi-
strategy or multi-objective variants, including NSGA-II–
assisted selection. Deep learning–based feature selection 
leverages neural gating and end-to-end optimization, 
covering stochastic gate frameworks, conditional stochastic 
gates, knockoff-based statistically controlled deep selection 
such as DeepPIG and differentiable masking approaches 
exemplified by AutoNFS. 

Filter methods
Filter-based feature selection methods evaluate the 
relevance of individual features using statistical or 
information-theoretic criteria that are independent of the 
predictive model. These methods are particularly suitable for 
IoT-based crop yield prediction due to their computational 
efficiency, scalability to high-dimensional sensor data 
and robustness to model-specific bias. In this study, three 
representative and widely adopted filter techniques are 
employed.

Mutual Information (MI) Ranking
Mutual Information quantifies the amount of information 
shared between a feature ( )jX  and the target variable (y), 
capturing both linear and non-linear dependencies. For each 
feature ( )jX , the mutual information ( )( );jI X y  is computed 

Figure 1: Taxonomy of Feature Selection Techniques
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using non-parametric entropy estimation. Features with 
higher mutual information values indicate stronger 
dependency with crop yield. After computing ( )( );jI X y  for 
all features, they are ranked in descending order and the 
top-(k) features are selected. MI ranking is model-agnostic 
and effective in identifying informative sensor variables 
in the presence of non-linear agronomic relationships; 
however, it does not explicitly account for redundancy 
among selected features.

ReliefF-Family Method (Regression Variant)
The ReliefF algorithm evaluates feature relevance by 
considering local neighborhood information in the feature 
space. For regression tasks, feature importance is estimated 
by comparing the differences between a given sample 
and its nearest neighbors, weighted by the corresponding 
differences in yield values. Features that consistently exhibit 
large differences when yield values differ significantly 
receive higher relevance scores. This neighborhood-
based mechanism enables the ReliefF-family method to 
capture feature interactions and local dependencies, which 
are common in soil–climate–yield relationships. Unlike 
univariate statistical filters, ReliefF partially accounts for 
feature interactions; however, it is sensitive to distance 
metrics and neighborhood size, which may affect stability 
in noisy IoT datasets.

Distance Correlation-Based Selection
Distance correlation measures the statistical dependence 
between two random variables and is capable of detecting 
both linear and non-linear associations. Unlike classical 
correlation measures, distance correlation equals zero if 
and only if the variables are statistically independent. For 
each feature ( )jX , the distance correlation ( )( )dCor ,jX y  with 
respect to crop yield is computed. Features are then ranked 
based on their distance correlation values and the top-(k) 
features are retained. This approach is particularly effective 
in complex agro-environmental datasets where non-linear 
dependencies dominate. However, distance correlation is 
computationally more expensive than MI and may become 
sensitive to sample size in high-dimensional settings.

Wrapper methods
Wrapper-based feature selection methods evaluate feature 
subsets using the performance of a predictive model, 
thereby directly optimizing feature relevance with respect 
to the learning objective. Unlike filter methods, wrapper 
approaches are model-dependent and capable of capturing 
complex feature interactions, which are common in IoT-
based crop yield prediction involving coupled soil, climate 
and management factors. In this study, three representative 
wrapper strategies are adopted.

RFE with Random Forest and XGBoost (RFE+RF / 
RFE+XGB)

Recursive Feature Elimination (RFE) is an iterative backward 
selection strategy that removes the least important 
features based on model-derived importance scores. In 
this approach, a Random Forest or XGBoost regressor is first 
trained using the complete feature set. Feature importance 
is then estimated from the trained model and a fixed 
proportion of the least important features is eliminated. 
This process is repeated recursively until the desired number 
of features (k) remains. RFE combined with ensemble tree 
models is effective in capturing non-linear relationships and 
feature interactions prevalent in agro-environmental data. 
However, the method is computationally intensive due to 
repeated model training and may be sensitive to instability 
in feature importance estimates under correlated predictors.

Sequential Forward Floating Selection with Cross-
Validation (SFFS+CV)
Sequential Forward Floating Selection is an extension of 
greedy forward selection that dynamically allows both 
inclusion and exclusion of features during the search 
process. Starting from an empty feature set, features are 
incrementally added based on improvement in cross-
validated performance, while previously selected features 
may be removed if they become redundant. In this 
study, the selection criterion is the negative root mean 
squared error (−RMSE) computed via cross-validation, 
ensuring direct optimization of yield prediction accuracy. 
SFFS+CV effectively explores feature interactions and 
mitigates nesting effects inherent in simple forward 
selection. Nevertheless, its greedy nature and repeated 
cross-validation lead to high computational cost, limiting 
scalability for large IoT datasets.

BorutaSHAP-Style Wrapper Selection
BorutaSHAP-style selection extends the classical Boruta 
algorithm by incorporating SHAP-based feature importance. 
The method augments the original dataset with shuffled 
copies of each feature, referred to as shadow features, which 
serve as a reference for irrelevance. A tree-based model is 
trained on the extended dataset and feature importances 
are computed using SHAP values. A feature is considered 
relevant if its importance consistently exceeds the maximum 
importance achieved by the shadow features. This strategy 
aims to identify all relevant predictors rather than a minimal 
subset, providing robustness against noise and correlated 
variables. However, BorutaSHAP-style methods incur 
substantial computational overhead due to repeated model 
training and SHAP value estimation.

Embedded methods
Embedded feature selection methods integrate the 
selection process directly into the model training phase, 
enabling simultaneous learning of predictive parameters 
and feature relevance. These methods offer a balanced 
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trade-off between computational efficiency and selection 
effectiveness, making them particularly suitable for IoT-
based crop yield prediction where feature dimensionality 
is moderate and interpretability is important.

ElasticNet Sparsity-Based Selection
ElasticNet combines L1 (lasso) and L2 (ridge) regularization 
to induce sparsity while maintaining stability in the 
presence of correlated features. During model training, 
the regularization terms shrink less informative feature 
coefficients toward zero, effectively performing feature 
selection. After training, features are ranked based on the 
absolute magnitude of their learned coefficients and the 
top-(k) features are retained. ElasticNet is well suited for 
high-dimensional sensor data with multicollinearity, as it 
avoids the instability associated with pure L1 regularization. 
However, its effectiveness depends on the assumption of 
approximately linear relationships between features and 
yield.

Tree-Based Importance Selection
Tree-based embedded methods derive feature relevance 
from the structure of decision trees. In this study, Random 
Forest feature importance is used to rank predictors based 
on their contribution to reducing impurity across tree splits. 
Features with higher importance values are assumed to 
have greater influence on yield prediction and are selected 
by retaining the top-(k) ranked features. This approach 
naturally captures non-linear relationships and higher-
order feature interactions common in agro-environmental 
data. Nevertheless, tree-based importance measures may 
exhibit bias toward features with higher variance or greater 
cardinality, particularly in one-hot encoded categorical 
variables.

SHAP-Based Embedded Selection (SHAP-Select)
SHAP-based selection evaluates feature relevance using 
Shapley Additive Explanations, which quantify the 
contribution of each feature to the model’s predictions 
in a theoretically grounded manner. The mean absolute 
SHAP value is computed for each feature across all 
samples, providing a global importance measure that 
is robust to feature correlation and interaction effects. 
Features are ranked based on these values and the top-(k) 
features are selected. When exact SHAP computation is 
computationally prohibitive, permutation importance is 
employed as a fallback approximation. SHAP-select offers 
improved interpretability and stability compared with raw 
tree importance, at the cost of increased computational 
overhead.

Bio-inspired methods
Bio-inspired feature selection methods formulate the 
selection task as a combinatorial optimization problem 
and employ population-based metaheuristic search to 

explore the feature subset space. These methods are 
particularly effective for IoT-based crop yield prediction, 
where the feature space is highly non-linear, multimodal 
and contains complex interactions between soil, climate 
and management variables. In this study, three recent and 
representative bio-inspired strategies are adopted.

MSWOA-Style Feature Selector
The MSWOA-style selector is inspired by multi-strategy 
variants of the Whale Optimization Algorithm (WOA), 
which enhance the original encircling and spiral search 
mechanisms through diversified exploration strategies. In 
this approach, candidate solutions are represented as real-
coded vectors, which are subsequently mapped to binary 
feature masks using a thresholding function. Multiple search 
strategies, including exploration-driven and exploitation-
driven movements, are alternated to avoid premature 
convergence. The fitness function is primarily defined using 
regression error (RMSE), with an additional penalty term to 
discourage large feature subsets. This design enables the 
algorithm to identify compact feature sets while maintaining 
competitive predictive accuracy. However, the stochastic 
nature of the search process introduces variability across 
runs and increases computational cost.

Multi-Objective WOA Proxy
The multi-objective WOA proxy extends the single-objective 
formulation by explicitly incorporating feature compactness 
as a competing objective. Instead of optimizing only 
prediction error, the fitness function simultaneously 
minimizes RMSE and the number of selected features, 
approximating a Pareto-optimal trade-off between accuracy 
and dimensionality. In practice, this is implemented by 
strengthening the feature-count penalty term, thereby 
biasing the search toward more compact subsets. This 
approach is well suited for edge-oriented IoT deployments 
where memory and inference efficiency are critical. 
Nevertheless, balancing the competing objectives requires 
careful tuning and overly aggressive penalization may lead 
to under-selection of informative features.

Dual-Encoding Binary Particle Swarm Optimization 
(BPSO)
Dual-encoding BPSO represents feature selection using 
binary particles whose positions correspond to feature 
inclusion probabilities. Particle velocities are updated based 
on individual and global best solutions and a sigmoid 
transformation is applied to convert velocities into selection 
probabilities. Feature inclusion is determined by probabilistic 
thresholding. The fitness function combines regression 
performance, measured using RMSE, with a penalty 
proportional to the number of selected features, encouraging 
sparse solutions. The dual-encoding mechanism improves 
search diversity and convergence stability compared with 
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standard BPSO. However, performance remains sensitive to 
swarm size and inertia parameters and repeated evaluations 
increase computational overhead.

WOA-inspired enhancements align with recent multi-
spiral/multi-population improvements in whale optimization 
for feature selection.

Deep feature selection
Deep feature selection methods integrate feature 
relevance learning into neural network architectures using 
differentiable gating mechanisms. These approaches learn 
feature masks jointly with prediction objectives, enabling 
the capture of non-linear dependencies and complex 
interactions inherent in IoT-based crop yield data. In this 
study, three neural gate–based selectors are implemented 
as practical proxies of recent deep feature selection 
frameworks.

c-STG Proxy (Conditional Stochastic Gates)
The c-STG proxy is inspired by conditional stochastic gate 
frameworks, in which feature relevance is modeled using 
learnable stochastic gates trained end-to-end with a neural 
regressor. Each feature is associated with a continuous gate 
variable that controls its contribution to the prediction. 
During training, these gates are optimized jointly with 
network parameters using gradient-based methods, while 
sparsity-inducing regularization encourages irrelevant 
features to be suppressed. Although the original c-STG 
formulation conditions gates on contextual variables, the 
proxy implementation employs global gates to approximate 
context-aware selection. This approach enables adaptive 
modeling of non-linear feature–yield relationships while 
maintaining interpretability through gate magnitudes.

DeepPIG Proxy (Knockoff-Based Stochastic Gates)
The DeepPIG proxy draws inspiration from stochastic gate 
architectures operating under knockoff-based statistical 
control frameworks. Feature relevance is learned through 
gated neural layers augmented with noise injection and 
stronger sparsity constraints, improving robustness against 
spurious correlations. By contrasting original features with 
perturbed or shuffled counterparts, the gating mechanism 
suppresses features that do not contribute consistently 
to prediction. This proxy emphasizes reliable feature 
discovery in noisy IoT environments, where sensor drift and 
unobserved confounding effects are common. However, 
the added regularization and stochasticity increase training 
complexity and computational cost. . 

AutoNFS Proxy (End-to-End Differentiable Masking)
The AutoNFS proxy represents end-to-end neural feature 
selection using differentiable masking techniques. Feature 
gates are learned jointly with the predictive model using 
continuous relaxations of binary masks, enabling direct 
optimization via backpropagation. After training, features 

are ranked according to the magnitude of learned gate 
values and the top-ranked features are selected. This 
approach provides flexibility and scalability for high-
dimensional sensor data and supports seamless integration 
with deep regressors. Nevertheless, the absence of explicit 
statistical control mechanisms may lead to overfitting if not 
properly regularized.

Experimental Setup

Predictive Models 
To evaluate the impact of feature selection on yield 
prediction performance, six widely used regression models 
are employed. These models represent linear, regularized, 
ensemble-based and deep learning paradigms, enabling 
a comprehensive comparison across different modeling 
assumptions.

Linear Regression serves as a baseline parametric model 
that assumes a linear relationship between features and yield. 
Ridge Regression introduces L2 regularization to mitigate 
multicollinearity and stabilize coefficient estimation. 
ElasticNet combines L1 and L2 regularization to induce 
sparsity while maintaining robustness under correlated 
predictors. Random Forest Regressor captures non-linear 
relationships and higher-order interactions through an 
ensemble of decision trees. XGBoost Regressor further 
enhances tree-based learning using gradient boosting and 
regularization mechanisms. MLP Regressor represents a 
non-linear neural model capable of approximating complex 
functional mappings between sensor inputs and yield.

Evaluation Metrics
Each feature selection–model combination is evaluated 
using multiple complementary metrics that jointly assess 
prediction accuracy, robustness and computational 
efficiency.

The Root Mean Squared Error (RMSE) measures the 
standard deviation of prediction errors and emphasizes 
large deviations between predicted and actual yield values:
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Table 1: Experimental Setup

Component Description

Dataset Smart Farming Sensor Data for Yield 
Prediction

Task Crop yield regression

Target Variable Yield (kg/ha)

Feature Selection 
Families

Filter, Wrapper, Embedded, Bio-inspired, 
Deep FS

Regression Models Linear Regression, Ridge, ElasticNet, 
Random Forest, XGBoost, MLP

Evaluation Metrics RMSE, MAE, (R^2), AUC-ROC, Inference 
Time, Memory Usage

AUC-ROC Labeling Median-binarized yield

Cross-Validation Repeated K-fold CV

Number of Folds ((K)) 5

Number of Repeats 
((R))

2

Feature Subset Size 
((k))

Adaptive based on transformed 
dimensionality

Significance Test Paired Wilcoxon signed-rank test

Significance 
Threshold

(p < 0.05)

Reproducibility Fixed random seed; per-method logs

To assess the discriminative ability between low- and high-
yield regimes, AUC-ROC is computed by median-binarizing 
the yield variable ( )( )biny  and using continuous predictions 
( )ŷ  as decision scores.

Computational efficiency is evaluated using inference 
time, defined as the average prediction latency measured 
in milliseconds over multiple runs and memory usage, 
measured as the change in resident set size (RSS) memory 
during inference.

Significance Testing
To determine whether feature selection leads to statistically 
meaningful improvements in prediction accuracy, a 
paired Wilcoxon signed-rank test is applied. RMSE 
distributions obtained from repeated cross-validation folds 
are compared between each feature selection method and 
the corresponding all-features baseline model.

A (p)-value less than 0.05 is considered indicative of 
a statistically significant difference. This non-parametric 
test is chosen due to its robustness to non-normal error 
distributions and its suitability for paired experimental 
comparisons.

Cross-Validation and Reproducibility Protocol
Model evaluation is performed using repeated K-fold cross-
validation with (K = 5) folds and (R = 2) repetitions to reduce 
variance due to data partitioning. All hyperparameters are 
fixed to commonly accepted default values to isolate the 
effect of feature selection rather than model tuning.

For each feature selection method, the number of selected 
features (k) is determined as a function of the transformed 
feature dimensionality to ensure comparable compression 
across methods. A fixed random seed is used throughout 
the experiments to ensure reproducibility. Detailed runtime 
logs, selected feature indices and evaluation statistics are 
recorded for each method and stored for further analysis.

Results and Discussion
Table 3 presents a comparative evaluation of feature-selection 
methods in terms of feature reduction rate, inference time 
and statistical significance of RMSE improvement with 
respect to the Ridge regression baseline. The results clearly 
demonstrate substantial variation across feature-selection 
families, reflecting different optimization priorities between 
compression, efficiency and predictive stability.

Bio-inspired approaches exhibit the highest levels of 
feature compression. The MSWOA-style method achieves 
an exceptional reduction rate of approximately 97.7%, 
selecting only a minimal subset of features. Such aggressive 
reduction confirms the effectiveness of multi-strategy whale 
optimization in identifying dominant agronomic predictors. 
However, the associated Wilcoxon p-value slightly exceeds 
the 0.05 threshold, indicating that extreme compression 
does not always guarantee statistically significant accuracy 
gains. In contrast, the multi-objective WOA and dual-
encoding BPSO retain larger subsets, trading compactness 
for more stable performance.

Wrapper-based methods demonstrate a balanced 
compromise between reduction and statistical reliability. 
BorutaSHAP-style selection achieves a high reduction rate 
while also yielding a statistically significant improvement 
over the baseline, highlighting the robustness of shadow-
feature testing combined with SHAP importance. Sequential 
Forward Floating Selection with cross-validation achieves 
statistical significance with moderate feature reduction, 
suggesting that performance-driven greedy search remains 
effective despite higher computational complexity.

Embedded methods show consistent and stable 
behavior. ElasticNet sparsity achieves statistically significant 
RMSE improvement with moderate feature reduction 
and low inference latency, confirming the benefit of 
regularization-based selection in correlated IoT sensor data. 
Tree-importance and SHAP-select methods demonstrate 
similar reduction levels with slightly higher inference cost, 
reflecting the overhead of ensemble models and attribution 
computation.

Filter methods provide fast inference with moderate 
reduction, but statistical signif icance is generally 
weaker. Distance-correlation-based selection performs 
competitively in efficiency, yet improvements over the 
baseline remain marginal in terms of significance, indicating 
that univariate dependency measures alone may be 
insufficient for capturing complex agronomic interactions.
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Deep feature-selection proxies maintain uniform reduction 
rates and low inference time; however, none achieve 
statistical significance in this setting. This outcome suggests 
higher variance and sensitivity to training dynamics, 
emphasizing the need for stronger contextual conditioning 
and regularization in neural gating frameworks.

Table 4 reports the number of features retained by 
each feature-selection method after the selection process, 
providing direct insight into the degree of dimensionality 
reduction and sparsity behavior across different selection 
families. The results reveal clear methodological differences 
in how aggressively redundancy is eliminated.

Bio-inspired approaches display the widest variability in 
selected feature count. The MSWOA-style selector reduces 
the feature space to a single dominant feature, indicating 
extreme sparsification driven by strong penalty terms on 
subset size. Such behavior highlights the capability of whale-
optimization variants to isolate highly influential agronomic 
predictors. However, this level of reduction also implies a 
higher risk of information loss and sensitivity to stochastic 
search dynamics. In contrast, multi-objective WOA and 
dual-encoding BPSO retain larger subsets, reflecting a more 
conservative trade-off between compression and predictive 
stability.

Wrapper-based methods generally converge toward 
moderate feature subsets. BorutaSHAP-style selection 
retains a small but diverse set of features, consistent with 
its “all-relevant” philosophy that favors robustness over 
minimality. RFE- and SFFS-based approaches stabilize 
around similar feature counts, indicating that performance-
driven greedy and recursive elimination strategies naturally 

settle at an intermediate dimensionality where marginal 
gains from further reduction diminish.

Embedded methods demonstrate high consistency in 
feature cardinality. ElasticNet, tree-importance and SHAP-
select methods retain an identical number of features, 
reflecting the influence of regularization strength and 
importance-thresholding criteria. This uniformity suggests 
that embedded approaches provide predictable and 
reproducible sparsity patterns, which is advantageous for 
deployment planning and interpretability in IoT-based 
agricultural systems.

Filter and deep feature-selection methods also 
retain comparable feature counts, typically aligned with 
predefined top-(k) selection rules or gate-thresholding 
mechanisms. While such consistency ensures computational 
simplicity, it also indicates limited adaptability to dataset-
specific redundancy compared with optimization-driven 
methods.

Table 5 reports the RMSE performance of different 
feature-selection methods evaluated across six regression 
models, providing a comprehensive view of how 
dimensionality reduction influences predictive accuracy 
in IoT-based crop yield estimation. Compared with the all-
features baseline, almost all feature-selection strategies 
reduce RMSE, confirming that eliminating redundant and 
noisy sensor variables improves generalization.

Among bio-inspired approaches, the MSWOA-style 
selector achieves some of the lowest RMSE values across 
linear and ensemble regressors, demonstrating that 
aggressive compression can still preserve core predictive 
information when dominant agronomic factors exist. 

Table 2: Feature Reduction, Inference Efficiency and Statistical Significance of Feature-Selection Methods

Method Feature_Reduction_Rate Inference_Time_ms Wilcoxon_pValue_vs_Baseline_RMSE(Ridge)

Bio_MSWOA_2024_style 0.976744 0.055387 0.064453

Wrapper_BorutaSHAP_style 0.837209 0.124413 0.048828

DeepFS_AutoNFS_2025_proxy 0.72093 0.08134 0.322266

DeepFS_DeepPIG_2024_proxy 0.72093 0.0813 0.232422

DeepFS_cSTG_2024_proxy 0.72093 0.05948 0.130859

Embedded_L1_ElasticNet 0.72093 0.066687 0.048828

Embedded_SHAP_select 0.72093 0.094593 0.105469

Embedded_TreeImportance 0.72093 0.098227 0.193359

Filter_DistanceCorr_HSIC_style 0.72093 0.058733 0.064453

Filter_MI_ranking 0.72093 0.121193 0.275391

Filter_ReliefF_family 0.72093 0.06022 0.105469

Wrapper_RFE_RF 0.72093 0.097587 0.322266

Wrapper_RFE_XGB 0.72093 0.094907 0.048828

Wrapper_SFFS_CV 0.72093 0.060247 0.013672

Bio_DualEncoding_BPSO_2025_style 0.581395 0.057573 0.275391

Bio_MultiObjective_WOA_2024_style 0.534884 0.067307 0.193359



5485	 THE SCIENTIFIC TEMPER, January 2026

Table 3: Selected Feature Count Across Feature-Selection Methods

Method Selected_Feature_Count

Bio_MSWOA_2024_style 1

Wrapper_BorutaSHAP_style 7

DeepFS_AutoNFS_2025_proxy 12

DeepFS_DeepPIG_2024_proxy 12

DeepFS_cSTG_2024_proxy 12

Embedded_L1_ElasticNet 12

Embedded_SHAP_select 12

Embedded_TreeImportance 12

Filter_DistanceCorr_HSIC_style 12

Filter_MI_ranking 12

Filter_ReliefF_family 12

Wrapper_RFE_RF 12

Wrapper_RFE_XGB 12

Wrapper_SFFS_CV 12

Bio_DualEncoding_BPSO_2025_style 18

Bio_MultiObjective_WOA_2024_style 20

Table 4: Root Mean Squared Error (RMSE) Comparison Across Feature-Selection Methods and Regression Models

Method ElasticNet LinReg MLP RF Ridge XGB

Baseline_AllFeatures 1242.3 1239.062 1228.554 1206.986 1228.816 1268.592

Bio_DualEncoding_BPSO_style 1196.05 1191.318 1310.685 1202.146 1191.361 1284.695

Bio_MSWOA_style 1174.999 1175.518 1360.522 1177.703 1174.205 1174.885

Bio_MultiObjective_WOA_style 1198.924 1213.987 1392.678 1217.987 1187.655 1294.425

DeepFS_AutoNFS_proxy 1199.764 1199.549 1316.127 1311.547 1200.189 1509.712

DeepFS_DeepPIG_proxy 1193.485 1204.073 1353.545 1338.795 1193.837 1473.906

DeepFS_cSTG_proxy 1192.945 1192.727 1269.993 1331.783 1194.905 1425.7

Embedded_L1_ElasticNet 1190.212 1178.479 1328.35 1217.413 1183.578 1312.978

Embedded_SHAP_select 1186.689 1181.029 1234.391 1193.66 1185.261 1232.262

Embedded_TreeImportance 1197.939 1191.95 1268.673 1204.651 1202.221 1261.378

Filter_DistanceCorr_HSIC_style 1183.811 1182.876 1257.763 1191.877 1187.071 1240.347

Filter_MI_ranking 1202.188 1200.63 1265.386 1232.793 1204.225 1286.81

Filter_ReliefF_family 1193.878 1194.193 1259.199 1185.195 1188.194 1246.013

Wrapper_BorutaSHAP_style 1177.796 1187.013 1245.569 1183.782 1184.173 1216.64

Wrapper_RFE_RF 1197.71 1195.383 1272.721 1206.891 1189.253 1246.41

Wrapper_RFE_XGB 1195.471 1193.254 1357.192 1211.982 1189.527 1273.449

Wrapper_SFFS_CV 1180.887 1180.704 1354.494 1267.943 1174.345 1386.938

However, performance degradation is observed for neural 
regressors, indicating sensitivity to over-compression and 
reduced feature diversity. Multi-objective WOA and dual-
encoding BPSO exhibit more stable RMSE behavior across 
models, albeit with slightly higher error values, reflecting a 
trade-off between compactness and robustness.

Wrapper-based methods show consistently strong 
RMSE reductions, particularly BorutaSHAP-style selection 

and SFFS-CV, which outperform the baseline across most 
regressors. The effectiveness of these methods stems from 
direct optimization of predictive performance and their 
ability to capture non-linear feature interactions. RFE-
based approaches demonstrate moderate improvements, 
suggesting that recursive elimination remains effective but 
may struggle under strong feature correlation.

Embedded methods achieve reliable and stable RMSE 
gains. ElasticNet reduces RMSE consistently for linear 
models, confirming the benefit of regularization under 
multicollinearity. Tree-importance and SHAP-select methods 
further improve RMSE for ensemble regressors, with SHAP-
select delivering some of the lowest errors overall. This 
indicates that attribution-based embedded selection better 
preserves influential non-linear relationships compared with 
raw importance scores.

Filter-based methods provide moderate RMSE 
improvements. Distance-correlation and ReliefF-based 
selection outperform mutual-information ranking, 
highlighting the importance of capturing non-linear 
dependencies and local interactions in agro-environmental 
data. Nevertheless, filter methods remain less competitive 
than wrapper and embedded approaches due to the 
absence of model-aware optimization.

Deep feature-selection proxies exhibit mixed RMSE 
performance. While linear and ridge regressors benefit from 
neural gating, higher RMSE values for ensemble and neural 
regressors suggest instability and sensitivity to training 
dynamics. This outcome underscores the need for fully 
context-conditioned gating mechanisms to realize the full 
potential of deep feature selection.
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Table 5: Mean Absolute Error (MAE) Comparison Across Feature-Selection Methods and Regression Models

Method ElasticNet LinReg MLP RF Ridge XGB

Baseline_AllFeatures 1072.326 1070.664 1060.709 1045.148 1063.623 1079.449

Bio_DualEncoding_BPSO_style 1035.653 1032.44 1110.417 1033.692 1028.835 1096.785

Bio_MSWOA_style 1030.039 1030.769 1144.619 1031.988 1028.515 1030.305

Bio_MultiObjective_WOA_style 1043.583 1052.664 1162.929 1052.968 1032.13 1104.276

DeepFS_AutoNFS_proxy 1050.022 1051.813 1121.898 1107.304 1054.301 1260.791

DeepFS_DeepPIG_proxy 1040.906 1054.643 1129.454 1135.588 1043.299 1224.666

DeepFS_cSTG_proxy 1042.628 1044.279 1083.785 1128.708 1042.991 1196.495

Embedded_L1_ElasticNet 1041.416 1030.476 1119.338 1062.491 1036.753 1110.321

Embedded_SHAP_select 1030.37 1023.259 1047.079 1024.386 1029.043 1038.987

Embedded_TreeImportance 1045.635 1041.588 1072.861 1039.622 1048.778 1066.579

Filter_DistanceCorr_HSIC_style 1026.004 1023.409 1065.652 1021.354 1028.162 1051.279

Filter_MI_ranking 1049.097 1050.748 1090.464 1067.876 1051.107 1095.676

Filter_ReliefF_family 1036.641 1037.587 1070.736 1022.489 1032.745 1055.889

Wrapper_BorutaSHAP_style 1029.863 1036.949 1061.144 1021.211 1034.915 1041.659

Wrapper_RFE_RF 1045.991 1042.742 1074.965 1044.504 1037.458 1061.868

Wrapper_RFE_XGB 1033.282 1031.59 1144.106 1040.614 1030.111 1077.918

Wrapper_SFFS_CV 1031.289 1030.698 1137.439 1082.799 1023.416 1155.089

2.(a) Emb_LR 2.(b) Emb_RF 2.(c) Emb_XGB

Figure 2: SHAP analysis of SHAP-Based Embedded Feature Selection Technique

Table 6 summarizes the MAE performance of different 
feature-selection methods across six regression models, 
highlighting the robustness of prediction improvements 
under an absolute-error criterion. In comparison with the all-
features baseline, most feature-selection strategies achieve 
noticeable reductions in MAE, indicating improved stability 
and reduced sensitivity to noisy sensor measurements.

Bio-inspired methods demonstrate substantial MAE 
reduction for linear and ensemble regressors. The 
MSWOA-style selector achieves some of the lowest MAE 
values under linear and ridge regression, confirming that 

aggressive dimensionality reduction can still preserve 
dominant yield-driving factors. However, higher MAE values 
for neural regressors indicate that extreme sparsification 
limits representational flexibility when complex non-linear 
mappings are required. Multi-objective WOA and dual-
encoding BPSO exhibit more moderate but stable MAE 
improvements, reflecting a balanced compromise between 
compression and predictive consistency.

Wrapper-based methods show consistently strong MAE 
performance. BorutaSHAP-style selection yields low MAE 
across multiple regressors, demonstrating the benefit of 
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Table 6: AUC–ROC Performance for Yield Regime Discrimination Across Feature-Selection Methods and Regression Models

Method ElasticNet LinReg MLP RF Ridge XGB

Baseline_AllFeatures 0.487843 0.486904 0.485634 0.509792 0.50272 0.490768

Bio_DualEncoding_BPSO_style 0.527299 0.519682 0.520053 0.534306 0.53458 0.487035

Bio_MSWOA_style 0.519392 0.517133 0.475801 0.515668 0.515718 0.515558

Bio_MultiObjective_WOA_style 0.508109 0.498828 0.499746 0.49958 0.535352 0.481839

DeepFS_AutoNFS_proxy 0.445324 0.449166 0.485489 0.484893 0.445529 0.46718

DeepFS_DeepPIG_proxy 0.504955 0.460513 0.511609 0.499413 0.476691 0.502132

DeepFS_cSTG_proxy 0.479994 0.477696 0.476513 0.471763 0.487675 0.484677

Embedded_L1_ElasticNet 0.536156 0.549184 0.508807 0.488659 0.532508 0.501379

Embedded_SHAP_select 0.54638 0.556302 0.535286 0.552386 0.541386 0.559875

Embedded_TreeImportance 0.488067 0.489682 0.501262 0.514366 0.476543 0.532742

Filter_DistanceCorr_HSIC_style 0.558463 0.571393 0.566475 0.557581 0.557477 0.553688

Filter_MI_ranking 0.444424 0.424857 0.45977 0.46702 0.427213 0.468695

Filter_ReliefF_family 0.519501 0.525031 0.520908 0.560249 0.528988 0.542779

Wrapper_BorutaSHAP_style 0.532771 0.509499 0.513625 0.566583 0.513866 0.559974

Wrapper_RFE_RF 0.480935 0.492799 0.492824 0.49959 0.511637 0.511089

Wrapper_RFE_XGB 0.541694 0.541611 0.500891 0.520901 0.537035 0.517675

Wrapper_SFFS_CV 0.532679 0.542782 0.533196 0.49092 0.559318 0.471357

identifying all relevant features while suppressing noise 
through shadow-feature comparison. SFFS-CV achieves 
competitive MAE for linear and ridge models, reinforcing the 
effectiveness of cross-validated greedy search in minimizing 
absolute deviations. RFE-based methods provide moderate 
MAE improvements, suggesting diminishing returns when 
feature elimination relies solely on recursive importance 
ranking.

Embedded methods achieve uniform and reliable 
MAE reductions. ElasticNet performs particularly well for 
linear models by stabilizing coefficient estimates under 
multicollinearity. Tree-importance and SHAP-select methods 
further reduce MAE for ensemble regressors, with SHAP-
select offering the most consistent improvements across 
all models. This outcome highlights the advantage of 
attribution-driven embedded selection in preserving both 
global and local predictive contributions.

Filter-based methods deliver modest but consistent 
MAE gains. Distance-correlation and ReliefF-family selection 
outperform mutual-information ranking, confirming that 
non-linear dependency measures and neighborhood-based 
relevance better capture agronomic interactions affecting 
yield magnitude.

Deep feature-selection proxies present mixed MAE 
behavior. While linear models benefit from neural 
gating mechanisms, higher MAE values for ensemble 
and neural regressors suggest increased variance and 
training sensitivity. This pattern indicates that current 
proxy implementations lack sufficient regularization and 

contextual conditioning to consistently minimize absolute 
prediction error.

Table 7 reports the AUC–ROC values obtained by 
different feature-selection methods across six regression 
models, evaluating the ability to discriminate between low- 
and high-yield regimes after median binarization of the yield 
variable. Unlike RMSE and MAE, AUC–ROC directly reflects 
decision-oriented usefulness, which is critical for operational 
agronomic planning.

Among all methods, filter-based distance-correlation 
selection achieves the highest AUC–ROC values overall, 
particularly under linear and ridge regressors, indicating 
superior discrimination capability. This highlights the 
effectiveness of non-linear dependency measures in 
separating yield regimes, even without model-aware 
optimization. ReliefF-family filters also attain high AUC–ROC 
values for ensemble models, confirming that neighborhood-
based relevance scoring captures regime-sensitive patterns.

Within embedded methods, SHAP-select consistently 
records some of the highest AUC–ROC scores across all 
regressors, including the top-performing values under linear, 
ridge, random forest and XGBoost models. This demonstrates 
that attribution-based feature selection preserves features 
that are not only predictive in magnitude but also critical 
for class-separating decision boundaries. ElasticNet also 
performs strongly for linear models, reinforcing the role of 
regularization in stabilizing discriminative signals.

Wrapper-based approaches show competitive 
performance. BorutaSHAP-style selection achieves the 
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3.(a) Fil_Dis_Cor_LR 2.(b) Fil_Dis_Cor _RF 3.(c) Fil_Dis_Cor _XGB

Figure 3: SHAP analysis of Filter based Distance Correlation Technique

4.(a) Wra_SSFS_LR 4.(b) Wra_SSFS_RF 4.(c) Wra_SSFS_XGB

Figure 4: SHAP analysis of Wrapper based Sequential Forward Floating Selection with Cross-Validation Technique

highest AUC–ROC under random forest and XGBoost 
regressors, reflecting the strength of all-relevant selection 
in maintaining class-separating information. RFE-XGB also 
records high AUC–ROC values for boosted trees, indicating 
effective alignment between the selector and the underlying 
model structure.

Bio-inspired methods demonstrate moderate but stable 
discrimination capability. While dual-encoding BPSO and 
MSWOA-style selection outperform the baseline, their 
AUC–ROC values remain lower than those of SHAP-select 
and distance-correlation filters, suggesting that extreme 
compression prioritizes regression accuracy over regime 
separability.

Deep feature-selection proxies exhibit the lowest 
AUC–ROC values overall, with none achieving the top 
scores for any regressor. This indicates that current proxy 
implementations struggle to preserve discriminative 
structure under stochastic gating and strong regularization.

Figure 2 illustrates the SHAP interaction analysis 
obtained using the SHAP-based embedded feature selection 
method combined with Linear Regression, Random Forest 
and XGBoost models. Across all three regressors, interaction 
magnitudes remain concentrated within a narrow range 

around zero, typically within ±0.25, indicating weak-to-
moderate second-order interactions. This interaction 
structure is consistent with the quantitative improvements 
observed for this method, where RMSE is reduced from 
1242.3 (all-features baseline) to 1186.7 and MAE decreases 
from 1072.3 to 1030.4 while retaining only 12 features.

Notably, SHAP-select also achieves strong yield-regime 
discrimination, with AUC–ROC values reaching 0.556 under 
Linear Regression, 0.552 under Random Forest and 0.560 
under XGBoost. The interaction plots in Figure 2 reveal stable 
and symmetric patterns for temperature, soil moisture, NDVI 
and spatial variables, suggesting that the performance 
gains arise from additive and conditionally independent 
contributions rather than strong nonlinear coupling. This 
behavior explains why SHAP-select delivers consistent 
RMSE and MAE reductions without inflating absolute R² 
values, which remain pessimistic under cross-validation 
in noisy agronomic settings. Overall, Figure 2 confirms 
that attribution-driven embedded selection preserves 
predictive and discriminative information while maintaining 
interpretability and stability.

Figure 3 presents SHAP interaction plots for the distance-
correlation–based filter method across Linear Regression, 
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Random Forest and XGBoost models. Compared with 
embedded selection, interaction magnitudes remain 
similarly bounded, typically within ±0.25, but exhibit slightly 
broader dispersion for NDVI–soil moisture and temperature–
spatial feature pairs. Quantitatively, this method achieves 
competitive RMSE values, with the lowest RMSE of 1183.8 
under ElasticNet and 1191.9 under Random Forest, while 
retaining 12 features. MAE values are also among the lowest 
reported, reaching 1026.0 under ElasticNet and 1021.4 under 
Random Forest.

The most distinctive quantitative outcome associated 
with Figure 3 is yield-regime discrimination. Distance-
correlation filtering attains the highest AUC–ROC values 
across all evaluated methods, peaking at 0.571 under Linear 
Regression and remaining above 0.55 for Random Forest 
and XGBoost. The interaction patterns in Figure 3 suggest 
that this superior discrimination arises from preserving non-
linear dependency structures rather than strong interaction 
effects. The relatively diffuse but centered interaction 
distributions indicate that regime separation is driven by 
consistent marginal effects across multiple features. These 
results demonstrate that filter-based dependency measures, 
while model-agnostic, are particularly effective for decision-
oriented agronomic tasks where classification between 
low- and high-yield regimes is more critical than absolute 
variance explanation.

Figure 4 shows SHAP interaction plots for the Sequential 
Forward Floating Selection with Cross-Validation (SFFS-CV) 
wrapper method applied to Linear Regression, Random 
Forest and XGBoost. Compared with Figures 2 and 3, 
interaction dispersion is slightly wider for certain feature 
pairs, particularly involving temporal variables and spatial 
coordinates, with interaction values extending closer to 
±0.3. This behavior aligns with the performance-driven 
nature of SFFS-CV, which directly optimizes cross-validated 
RMSE during feature subset construction.

Quantitatively, SFFS-CV achieves one of the strongest 
statistically significant RMSE improvements, with a Wilcoxon 
p-value of 0.0137, confirming robustness against the all-
features baseline. RMSE values fall to 1174.3 under Ridge 
regression, representing one of the lowest errors observed 
among all methods. However, AUC–ROC performance is 
more variable, reaching 0.559 under Ridge but declining 
under XGBoost to 0.471. The interaction plots in Figure 4 
reflect this trade-off: stronger localized interactions improve 
regression accuracy but do not consistently preserve class-
separating structure for yield regimes.

Conclusion and Future Work
This study presented a unified and systematic evaluation 
of feature-selection techniques for IoT-based crop-
yield prediction using smart-farming sensor data. Five 
feature-selection families were compared under identical 

preprocessing, regression models, repeated cross-validation 
and statistical significance testing. Across all regressors, 
feature selection consistently improved predictive 
performance over the all-features baseline. Embedded 
SHAP-based selection achieved one of the best accuracy, 
reducing RMSE and MAE while retaining only 12 features. 
Wrapper-based BorutaSHAP and SFFS-CV methods 
yielded statistically significant RMSE improvements (p < 
0.05), confirming the effectiveness of model-aware subset 
evaluation. Yield regime discrimination also improved 
substantially, with distance-correlation filtering and 
SHAP-select achieving peak AUC–ROC values of 0.571 and 
0.560, respectively. Despite comprehensive evaluation, 
several limitations remain. Fixed hyperparameter settings 
were used to isolate feature-selection effects, potentially 
underestimating the performance of methods that benefit 
from task-specific tuning. Future work should evaluate 
temporal generalization (train on early seasons, test on later 
seasons), incorporate domain adaptation for region shifts 
and implement full-context conditional gating to learn 
different feature subsets per crop–region–management 
context.
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