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Abstract

Feature selection plays a critical role in Internet-of-Things (IoT)-based crop-yield prediction due to the presence of heterogeneous,
redundant and context-dependent variables derived from soil, climate, management and remote-sensing sources. High-dimensional
smart-farming data often degrades generalization performance and increases inference cost, limiting deployment on edge devices.
A comprehensive comparative analysis of five feature-selection families: filter, wrapper, embedded, bio-inspired and deep learning-
based is conducted using the Smart Farming Sensor Data for Yield Prediction dataset. Fifteen representative methods are evaluated
under identical preprocessing, repeated cross-validation and non-parametric significance testing. Embedded SHAP-based selection
reduces root mean squared error from 1242.3 to 1186.7 and mean absolute error from 1072.3 to 1030.4 while retaining only 12 features,
achieving the strongest accuracy-efficiency trade-off. Bio-inspired multi-strategy whale optimization attains the highest compression,
eliminating up to 97.7% of features with competitive RMSE values near 1175 under linear and ensemble regressors. Yield-regime
discrimination improves substantially, with distance-correlation filtering and SHAP-select achieving peak AUC-ROC values of 0.571
and 0.560, respectively. Paired Wilcoxon signed-rank tests confirm statistically significant improvements for wrapper and embedded
methods (p < 0.05). Results demonstrate that importance-driven embedded selection and multi-objective bio-inspired optimization
are well suited for accurate, interpretable and edge-deployable loT crop-yield analytics.

Keywords: loT agriculture, crop yield prediction, feature selection, smart farming sensors, SHAP, whale optimization, binary PSO,
stochastic gates, contextual feature selection.

Introduction

Smart farming systems increasingly rely on loT sensor
networks and decision-support pipelines to monitor soil
and microclimate conditions and to forecast crop yield at
the farm scale (Aarif et al. 2025). Yield prediction supports
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irrigation scheduling, fertilizer planning, market logistics
and risk management (Ajith et al. 2025). However, loT
datasets are typically noisy and heterogeneous, mixing
continuous sensor variables (soil moisture, temperature,
rainfall, humidity), management inputs (irrigation type,
fertilizer type, pesticide usage), remote-sensing proxies
(NDVI) and spatiotemporal metadata (latitude-longitude
and timestamps) (Samutrak & Tongkam 2024). Such data
often includes redundancy and multicollinearity (e.g.,
humidity and rainfall; NDVI and sunlight hours), as well
as context-dependent relevance where predictors matter
differently across regions, crop types and irrigation regimes
(Rodriguez et al. 2025).

Feature selection addresses these issues by identifying
a compact subset of informative features, improving
generalization, interpretability and deployment efficiency
(Cheng 2025). Classical filter and wrapper methods remain
widely used due to simplicity and effectiveness, but recent
work emphasizes robust and context-aware selection (Liyew
2025). Conditional Stochastic Gates (c-STG) explicitly models
context-dependent feature relevance using conditional
Bernoulli gates predicted from context variables (Sristi et
al. 2023). Knockoff-based gate networks such as DeepPIG

Published: 25/01/2026
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integrate stochastic gating with a knockoff framework to
improve detection power while controlling false discoveries
(Oh et al.2024). In parallel, bio-inspired metaheuristics such
as multi-strategy and multi-objective whale optimization
variants continue to improve subset search and compression
in high-dimensional settings (Zhou et al. 2025).

Problem Definition

loT-based crop yield prediction involves high-dimensional,
heterogeneous sensor data with substantial redundancy,
multicollinearity and noise, which degrades generalization
performance and limits deployment on resource-constrained
systems. Existing studies lack a unified and statistically
grounded comparison of feature-selection methods,
making it unclear which techniques best balance accuracy,
robustness, interpretability and computational efficiency.

Scope of the Paper

This paper conducts a controlled evaluation of representative
filter, wrapper, embedded, bio-inspired and deep learning
based feature selection methods for loT-driven crop yield
prediction using consistent preprocessing and validation
protocols. The scope includes quantitative performance
analysis, statistical significance testing and SHAP-based
interpretability assessment, while excluding real-time
deployment and multi-crop generalization.

Related Work

Recent research on feature selection for loT-based crop
yield prediction in smart farming has advanced through
hybrid wrappers, bio-inspired optimizers, embedded
methods and explainable Al integrations, addressing
high-dimensional sensor data challenges like redundancy
and context-dependency (Shawon et al. 2025). Hybrid
approaches combining correlation-based filters with
recursive feature elimination (RFE) or neural transformations
have improved model efficiency. For instance, a study
proposes ET-DPFS, blending correlation feature selection
with neural networks to reduce extraction time to 0.816
seconds and boost XGBoost accuracy to 87% on crop yield
datasets. Another framework integrates K-means clustering,
CFS and FMIG-RFE with ICOA-optimized SVR, enhancing
prediction by eliminating irrelevant soil/weather features
while minimizing hyperparameters tuning overhead (Hukare
et al. 2025).

Hybrid methods merging filters like random forest
importance with wrappers such as grey wolf-chaotic dung
beetle optimization reduce high-dimensional loT data while
diversifying subsets. PMC study introduces HMF-W, using
RF-FIM for initial pruning followed by mSMMI and HGW-
CDBW wrappers with process optimization mechanism,
outperforming baselines on omics-like agronomic
datasets. Another study develops HMLCWFS for paddy
yield, combining backward elimination, stepwise forward

selection, feature importance, exhaustive FS and gradient
boosting to select key features from paddy datasets (Shi et
al. 2025). Bio-inspired algorithms like whale optimization
variants and particle swarm optimization continue to excel
in compressing loT sensor features for edge deployment. A
recent study introduces multi-strategy whale optimization
for feature subset search, achieving high compression with
competitive RMSE on agronomic data. Dual-encoding binary
PSO, as explored in recent open-access works, balances
sparsity and accuracy in heterogeneous farming datasets
by probabilistic thresholding (Wang et al. 2026).

Bio-inspired wrappers frame selection as multi-objective
optimization for sparse, accurate subsets in smart farming.
Bajer et al. explore bio-inspired wrappers, analyzing
metric choices like fitness functions for feature subsets in
agriculture, showing metric selection impacts convergence
and sparsity (Bajer et al. 2022). Embedded methods using
tree importance, SHAP, or ElasticNet sparsity provide
robust selection integrated with regressors like XGBoost.
BorutaSHAP-style shadow-feature testing, highlighted in
reviews, identifies all-relevant predictors while controlling
false discoveries in noisy loT streams. Ensemble learning
with effective data preprocessing, uses feature importance
ranking to predict yields, outperforming baselines in RMSE
and R? on multi-sensor inputs (Tripathi et al. 2025).

Multi-objective wrappers balance accuracy, sparsity
and computation for edge-deployable models. A wrapper
methods optimizing multiple objectives like error and
feature count, suitable for loT yield tasks. VD proposes
XAl-enhanced XGBoost with filter-wrapper hybrid RF-PSO
for Mizoram precision agriculture crop recommendation,
improving interpretability and selection via particle swarm
(VD et al. 2025). Deep proxies like conditional stochastic
gates (c-STG) and knockoff-based DeepPIG enable context-
adaptive gating for varying agronomic regimes. Naseer
et al. applies XAl (SHAP/LIME) in precision agriculture for
interpretable yield forecasting from loT sensors, improving
trust in feature contributions. AutoNFS-style end-to-end
differentiable masking, combined with physics-aware
ensembles, enhances generalization by embedding crop-
specific constraints (Naseer et al. 2025).

XAl tools like SHAP integrate with embedded selection
for transparent yield models from heterogeneous sensors.
Mohan et al. (2025) in Frontiers apply Al-XAl with SHAP/LIME
on CNNs for climate-resilient yield prediction, revealing soil
moisture and temperature as top contributors (Mohan et al.
2025). Rezek et al. uses XAI-ML for soil nutrient prediction in
cabbage farming, employing SHAP for feature attribution
in precision agriculture loT setups (Rezek et al. 2025). loT-
integrated selection for smart farming emphasizes real-time
efficiency. Nemati et al. discuss sensor fusion with hybrid
selection for precision yield models, stressing scalability
for soil/moisture inputs (Nemati et al. 2024). loT-focused
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selection handles real-time sensor fusion. Bouarourouet et
al. deploys Al-loT for crop prediction, using embedded FS
for nutrient/irrigation optimization. They introduce GA-gray
wolf hybrids with ANN for classification-grade selection in
agriculture, enhancing yield proxies via swarm intelligence
(Bouarourouet al. 2024).

Materials and Methods

Dataset and target

The Smart Farming Sensor Data for Yield Prediction dataset
includes sensor and management variables with yield in
kg/ha as the target (Atharva 2025). Continuous variables
cover soil conditions and climate, while categorical variables
encode agronomic choices (crop type, irrigation, fertilizer
type, disease status, region).

Feature-selection methods

Figure 1 presents a comprehensive taxonomy of feature
selection techniques for loT-based crop yield prediction,
systematically organizing existing methods into five
major families based on their selection philosophy and
optimization strategy. Filter-based feature selection includes
univariate statistical filters such as Pearson and Spearman
correlation, mutual information and ANOVA F-test, along
with neighborhood- and interaction-aware methods like
ReliefF variants and dependency-based measures such as
distance correlation and Hilbert-Schmidt Independence
Criterion. Wrapper-based feature selection relies on
predictive-model feedback and encompasses sequential
search strategies, including sequential forward, backward
and floating selection, recursive feature elimination using
Random Forest or XGBoost and shadow-feature-based
all-relevant approaches such as Boruta and BorutaSHAP-

style methods. Embedded feature selection integrates
selection within model training through regularization-
based techniques such as LASSO and ElasticNet, tree-based
importance measures from Random Forest and gradient
boosting and attribution-driven approaches using SHAP
or permutation importance. Bio-inspired feature selection
formulates subset selection as a combinatorial optimization
problem, employing swarm-intelligence methods such as
particle swarm optimization, binary and dual-encoding
PSO, whale optimization algorithms and advanced multi-
strategy or multi-objective variants, including NSGA-II-
assisted selection. Deep learning-based feature selection
leverages neural gating and end-to-end optimization,
covering stochastic gate frameworks, conditional stochastic
gates, knockoff-based statistically controlled deep selection
such as DeepPIG and differentiable masking approaches
exemplified by AutoNFS.

Filter methods

Filter-based feature selection methods evaluate the
relevance of individual features using statistical or
information-theoretic criteria that are independent of the
predictive model. These methods are particularly suitable for
loT-based crop yield prediction due to their computational
efficiency, scalability to high-dimensional sensor data
and robustness to model-specific bias. In this study, three
representative and widely adopted filter techniques are
employed.

Mutual Information (MI) Ranking

Mutual Information quantifies the amount of information
shared between a feature (x,) and the target variable (y),
capturing both linear and non-linear dependencies. For each
feature (x,), the mutual information (1(x;»)) is computed
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using non-parametric entropy estimation. Features with
higher mutual information values indicate stronger
dependency with crop yield. After computing (/(;:»)) for
all features, they are ranked in descending order and the
top-(k) features are selected. Ml ranking is model-agnostic
and effective in identifying informative sensor variables
in the presence of non-linear agronomic relationships;
however, it does not explicitly account for redundancy
among selected features.

ReliefF-Family Method (Regression Variant)

The ReliefF algorithm evaluates feature relevance by
considering local neighborhood information in the feature
space. For regression tasks, feature importance is estimated
by comparing the differences between a given sample
and its nearest neighbors, weighted by the corresponding
differences in yield values. Features that consistently exhibit
large differences when yield values differ significantly
receive higher relevance scores. This neighborhood-
based mechanism enables the ReliefF-family method to
capture feature interactions and local dependencies, which
are common in soil-climate-yield relationships. Unlike
univariate statistical filters, ReliefF partially accounts for
feature interactions; however, it is sensitive to distance
metrics and neighborhood size, which may affect stability
in noisy loT datasets.

Distance Correlation-Based Selection

Distance correlation measures the statistical dependence
between two random variables and is capable of detecting
both linear and non-linear associations. Unlike classical
correlation measures, distance correlation equals zero if
and only if the variables are statistically independent. For
each feature (x,), the distance correlation (dCor(X/.,y)) with
respect to crop yield is computed. Features are then ranked
based on their distance correlation values and the top-(k)
features are retained. This approach is particularly effective
in complex agro-environmental datasets where non-linear
dependencies dominate. However, distance correlation is
computationally more expensive than Ml and may become
sensitive to sample size in high-dimensional settings.

Wrapper methods

Wrapper-based feature selection methods evaluate feature
subsets using the performance of a predictive model,
thereby directly optimizing feature relevance with respect
to the learning objective. Unlike filter methods, wrapper
approaches are model-dependent and capable of capturing
complex feature interactions, which are common in loT-
based crop yield prediction involving coupled soil, climate
and management factors. In this study, three representative
wrapper strategies are adopted.

RFE with Random Forest and XGBoost (RFE+RF /
RFE+XGB)

Recursive Feature Elimination (RFE) is an iterative backward
selection strategy that removes the least important
features based on model-derived importance scores. In
this approach, a Random Forest or XGBoost regressor is first
trained using the complete feature set. Feature importance
is then estimated from the trained model and a fixed
proportion of the least important features is eliminated.
This process is repeated recursively until the desired number
of features (k) remains. RFE combined with ensemble tree
models is effective in capturing non-linear relationships and
feature interactions prevalent in agro-environmental data.
However, the method is computationally intensive due to
repeated model training and may be sensitive to instability
in feature importance estimates under correlated predictors.

Sequential Forward Floating Selection with Cross-
Validation (SFFS+CV)

Sequential Forward Floating Selection is an extension of
greedy forward selection that dynamically allows both
inclusion and exclusion of features during the search
process. Starting from an empty feature set, features are
incrementally added based on improvement in cross-
validated performance, while previously selected features
may be removed if they become redundant. In this
study, the selection criterion is the negative root mean
squared error (—RMSE) computed via cross-validation,
ensuring direct optimization of yield prediction accuracy.
SFFS+CV effectively explores feature interactions and
mitigates nesting effects inherent in simple forward
selection. Nevertheless, its greedy nature and repeated
cross-validation lead to high computational cost, limiting
scalability for large loT datasets.

BorutaSHAP-Style Wrapper Selection
BorutaSHAP-style selection extends the classical Boruta
algorithm by incorporating SHAP-based feature importance.
The method augments the original dataset with shuffled
copies of each feature, referred to as shadow features, which
serve as a reference for irrelevance. A tree-based model is
trained on the extended dataset and feature importances
are computed using SHAP values. A feature is considered
relevant if its importance consistently exceeds the maximum
importance achieved by the shadow features. This strategy
aims to identify all relevant predictors rather than a minimal
subset, providing robustness against noise and correlated
variables. However, BorutaSHAP-style methods incur
substantial computational overhead due to repeated model
training and SHAP value estimation.

Embedded methods

Embedded feature selection methods integrate the
selection process directly into the model training phase,
enabling simultaneous learning of predictive parameters
and feature relevance. These methods offer a balanced
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trade-off between computational efficiency and selection
effectiveness, making them particularly suitable for loT-
based crop yield prediction where feature dimensionality
is moderate and interpretability is important.

ElasticNet Sparsity-Based Selection

ElasticNet combines L1 (lasso) and L2 (ridge) regularization
to induce sparsity while maintaining stability in the
presence of correlated features. During model training,
the regularization terms shrink less informative feature
coefficients toward zero, effectively performing feature
selection. After training, features are ranked based on the
absolute magnitude of their learned coefficients and the
top-(k) features are retained. ElasticNet is well suited for
high-dimensional sensor data with multicollinearity, as it
avoids the instability associated with pure L1 regularization.
However, its effectiveness depends on the assumption of
approximately linear relationships between features and
yield.

Tree-Based Importance Selection

Tree-based embedded methods derive feature relevance
from the structure of decision trees. In this study, Random
Forest feature importance is used to rank predictors based
on their contribution to reducing impurity across tree splits.
Features with higher importance values are assumed to
have greater influence on yield prediction and are selected
by retaining the top-(k) ranked features. This approach
naturally captures non-linear relationships and higher-
order feature interactions common in agro-environmental
data. Nevertheless, tree-based importance measures may
exhibit bias toward features with higher variance or greater
cardinality, particularly in one-hot encoded categorical
variables.

SHAP-Based Embedded Selection (SHAP-Select)
SHAP-based selection evaluates feature relevance using
Shapley Additive Explanations, which quantify the
contribution of each feature to the model’s predictions
in a theoretically grounded manner. The mean absolute
SHAP value is computed for each feature across all
samples, providing a global importance measure that
is robust to feature correlation and interaction effects.
Features are ranked based on these values and the top-(k)
features are selected. When exact SHAP computation is
computationally prohibitive, permutation importance is
employed as a fallback approximation. SHAP-select offers
improved interpretability and stability compared with raw
tree importance, at the cost of increased computational
overhead.

Bio-inspired methods

Bio-inspired feature selection methods formulate the
selection task as a combinatorial optimization problem
and employ population-based metaheuristic search to

explore the feature subset space. These methods are
particularly effective for loT-based crop yield prediction,
where the feature space is highly non-linear, multimodal
and contains complex interactions between soil, climate
and management variables. In this study, three recent and
representative bio-inspired strategies are adopted.

MSWOA-Style Feature Selector

The MSWOA-style selector is inspired by multi-strategy
variants of the Whale Optimization Algorithm (WOA),
which enhance the original encircling and spiral search
mechanisms through diversified exploration strategies. In
this approach, candidate solutions are represented as real-
coded vectors, which are subsequently mapped to binary
feature masks using a thresholding function. Multiple search
strategies, including exploration-driven and exploitation-
driven movements, are alternated to avoid premature
convergence. The fitness function is primarily defined using
regression error (RMSE), with an additional penalty term to
discourage large feature subsets. This design enables the
algorithm to identify compact feature sets while maintaining
competitive predictive accuracy. However, the stochastic
nature of the search process introduces variability across
runs and increases computational cost.

Multi-Objective WOA Proxy

The multi-objective WOA proxy extends the single-objective
formulation by explicitly incorporating feature compactness
as a competing objective. Instead of optimizing only
prediction error, the fitness function simultaneously
minimizes RMSE and the number of selected features,
approximating a Pareto-optimal trade-off between accuracy
and dimensionality. In practice, this is implemented by
strengthening the feature-count penalty term, thereby
biasing the search toward more compact subsets. This
approach is well suited for edge-oriented loT deployments
where memory and inference efficiency are critical.
Nevertheless, balancing the competing objectives requires
careful tuning and overly aggressive penalization may lead
to under-selection of informative features.

Dual-Encoding Binary Particle Swarm Optimization
(BPSO)

Dual-encoding BPSO represents feature selection using
binary particles whose positions correspond to feature
inclusion probabilities. Particle velocities are updated based
on individual and global best solutions and a sigmoid
transformation is applied to convert velocities into selection
probabilities. Feature inclusion is determined by probabilistic
thresholding. The fitness function combines regression
performance, measured using RMSE, with a penalty
proportional to the number of selected features, encouraging
sparse solutions. The dual-encoding mechanism improves
search diversity and convergence stability compared with
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standard BPSO. However, performance remains sensitive to
swarm size and inertia parameters and repeated evaluations
increase computational overhead.

WOA-inspired enhancements align with recent multi-
spiral/multi-population improvements in whale optimization
for feature selection.

Deep feature selection

Deep feature selection methods integrate feature
relevance learning into neural network architectures using
differentiable gating mechanisms. These approaches learn
feature masks jointly with prediction objectives, enabling
the capture of non-linear dependencies and complex
interactions inherent in loT-based crop yield data. In this
study, three neural gate-based selectors are implemented
as practical proxies of recent deep feature selection
frameworks.

¢-STG Proxy (Conditional Stochastic Gates)

The ¢-STG proxy is inspired by conditional stochastic gate
frameworks, in which feature relevance is modeled using
learnable stochastic gates trained end-to-end with a neural
regressor. Each feature is associated with a continuous gate
variable that controls its contribution to the prediction.
During training, these gates are optimized jointly with
network parameters using gradient-based methods, while
sparsity-inducing regularization encourages irrelevant
features to be suppressed. Although the original c-STG
formulation conditions gates on contextual variables, the
proxy implementation employs global gates to approximate
context-aware selection. This approach enables adaptive
modeling of non-linear feature-yield relationships while
maintaining interpretability through gate magnitudes.

DeepPIG Proxy (Knockoff-Based Stochastic Gates)
The DeepPIG proxy draws inspiration from stochastic gate
architectures operating under knockoff-based statistical
control frameworks. Feature relevance is learned through
gated neural layers augmented with noise injection and
stronger sparsity constraints, improving robustness against
spurious correlations. By contrasting original features with
perturbed or shuffled counterparts, the gating mechanism
suppresses features that do not contribute consistently
to prediction. This proxy emphasizes reliable feature
discovery in noisy loT environments, where sensor drift and
unobserved confounding effects are common. However,
the added regularization and stochasticity increase training
complexity and computational cost. .

AutoNFS Proxy (End-to-End Differentiable Masking)

The AutoNFS proxy represents end-to-end neural feature
selection using differentiable masking techniques. Feature
gates are learned jointly with the predictive model using
continuous relaxations of binary masks, enabling direct
optimization via backpropagation. After training, features

are ranked according to the magnitude of learned gate
values and the top-ranked features are selected. This
approach provides flexibility and scalability for high-
dimensional sensor data and supports seamless integration
with deep regressors. Nevertheless, the absence of explicit
statistical control mechanisms may lead to overfitting if not
properly regularized.

Experimental Setup

Predictive Models

To evaluate the impact of feature selection on yield
prediction performance, six widely used regression models
are employed. These models represent linear, regularized,
ensemble-based and deep learning paradigms, enabling
a comprehensive comparison across different modeling
assumptions.

Linear Regression serves as a baseline parametric model
thatassumes a linear relationship between features and yield.
Ridge Regression introduces L2 regularization to mitigate
multicollinearity and stabilize coefficient estimation.
ElasticNet combines L1 and L2 regularization to induce
sparsity while maintaining robustness under correlated
predictors. Random Forest Regressor captures non-linear
relationships and higher-order interactions through an
ensemble of decision trees. XGBoost Regressor further
enhances tree-based learning using gradient boosting and
regularization mechanisms. MLP Regressor represents a
non-linear neural model capable of approximating complex
functional mappings between sensor inputs and yield.

Evaluation Metrics
Each feature selection-model combination is evaluated
using multiple complementary metrics that jointly assess
prediction accuracy, robustness and computational
efficiency.

The Root Mean Squared Error (RMSE) measures the
standard deviation of prediction errors and emphasizes
large deviations between predicted and actual yield values:

RMSE = \/%Zfl(yi _;i)z

The Mean Absolute Error (MAE) quantifies the average
magnitude of prediction errors and provides a more robust
measure against outliers:

1 n -~
MAE=—3" |y, -3

The coefficient of determination () measures the
proportion of variance in yield explained by the model:

n A2
Rz_l_ Zi:](yi_yl) =
Zi:l”(y,.—j;)
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Table 1: Experimental Setup

Component Description

Dataset Smart Farming Sensor Data for Yield
Prediction

Task Crop yield regression

Target Variable Yield (kg/ha)

Feature Selection
Families

Regression Models

Evaluation Metrics

AUC-ROC Labeling
Cross-Validation
Number of Folds ((K))

Number of Repeats

(R)

Feature Subset Size

((k)
Significance Test

Significance
Threshold

Reproducibility

Filter, Wrapper, Embedded, Bio-inspired,
Deep FS

Linear Regression, Ridge, ElasticNet,
Random Forest, XGBoost, MLP

RMSE, MAE, (RA2), AUC-ROC, Inference
Time, Memory Usage

Median-binarized yield
Repeated K-fold CV

5

2

Adaptive based on transformed
dimensionality

Paired Wilcoxon signed-rank test
(p < 0.05)

Fixed random seed; per-method logs

To assess the discriminative ability between low- and high-
yield regimes, AUC-ROC is computed by median-binarizing
the yield variable ((»")) and using continuous predictions
(») as decision scores.

Computational efficiency is evaluated using inference
time, defined as the average prediction latency measured
in milliseconds over multiple runs and memory usage,
measured as the change in resident set size (RSS) memory
during inference.

Significance Testing
To determine whether feature selection leads to statistically
meaningful improvements in prediction accuracy, a
paired Wilcoxon signed-rank test is applied. RMSE
distributions obtained from repeated cross-validation folds
are compared between each feature selection method and
the corresponding all-features baseline model.

A (p)-value less than 0.05 is considered indicative of
a statistically significant difference. This non-parametric
test is chosen due to its robustness to non-normal error
distributions and its suitability for paired experimental
comparisons.

Cross-Validation and Reproducibility Protocol

Model evaluation is performed using repeated K-fold cross-
validation with (K=5) folds and (R = 2) repetitions to reduce
variance due to data partitioning. All hyperparameters are
fixed to commonly accepted default values to isolate the
effect of feature selection rather than model tuning.

For each feature selection method, the number of selected
features (k) is determined as a function of the transformed
feature dimensionality to ensure comparable compression
across methods. A fixed random seed is used throughout
the experiments to ensure reproducibility. Detailed runtime
logs, selected feature indices and evaluation statistics are
recorded for each method and stored for further analysis.

Results and Discussion

Table 3 presents a comparative evaluation of feature-selection
methods in terms of feature reduction rate, inference time
and statistical significance of RMSE improvement with
respect to the Ridge regression baseline. The results clearly
demonstrate substantial variation across feature-selection
families, reflecting different optimization priorities between
compression, efficiency and predictive stability.

Bio-inspired approaches exhibit the highest levels of
feature compression. The MSWOA-style method achieves
an exceptional reduction rate of approximately 97.7%,
selecting only a minimal subset of features. Such aggressive
reduction confirms the effectiveness of multi-strategy whale
optimization in identifying dominant agronomic predictors.
However, the associated Wilcoxon p-value slightly exceeds
the 0.05 threshold, indicating that extreme compression
does not always guarantee statistically significant accuracy
gains. In contrast, the multi-objective WOA and dual-
encoding BPSO retain larger subsets, trading compactness
for more stable performance.

Wrapper-based methods demonstrate a balanced
compromise between reduction and statistical reliability.
BorutaSHAP-style selection achieves a high reduction rate
while also yielding a statistically significant improvement
over the baseline, highlighting the robustness of shadow-
feature testing combined with SHAP importance. Sequential
Forward Floating Selection with cross-validation achieves
statistical significance with moderate feature reduction,
suggesting that performance-driven greedy search remains
effective despite higher computational complexity.

Embedded methods show consistent and stable
behavior. ElasticNet sparsity achieves statistically significant
RMSE improvement with moderate feature reduction
and low inference latency, confirming the benefit of
regularization-based selection in correlated loT sensor data.
Tree-importance and SHAP-select methods demonstrate
similar reduction levels with slightly higher inference cost,
reflecting the overhead of ensemble models and attribution
computation.

Filter methods provide fast inference with moderate
reduction, but statistical significance is generally
weaker. Distance-correlation-based selection performs
competitively in efficiency, yet improvements over the
baseline remain marginal in terms of significance, indicating
that univariate dependency measures alone may be
insufficient for capturing complex agronomic interactions.
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Table 2: Feature Reduction, Inference Efficiency and Statistical Significance of Feature-Selection Methods

Inference_Time_ms Wilcoxon_pValue_vs_Baseline_RMSE(Ridge)

Method Feature_Reduction_Rate
Bio_ MSWOA_2024_style 0.976744
Wrapper_BorutaSHAP_style 0.837209
DeepFS_AutoNFS_2025_proxy 0.72093
DeepFS_DeepPIG_2024_proxy 0.72093
DeepFS_cSTG_2024_proxy 0.72093
Embedded_L1_ElasticNet 0.72093
Embedded_SHAP_select 0.72093
Embedded_Treelmportance 0.72093
Filter_DistanceCorr_HSIC_style 0.72093
Filter_MI_ranking 0.72093
Filter_ReliefF_family 0.72093
Wrapper_RFE_RF 0.72093
Wrapper_RFE_XGB 0.72093
Wrapper_SFFS_CV 0.72093
Bio_DualEncoding_BPSO_2025_style 0.581395
Bio_MultiObjective_WOA_2024_style 0.534884

0.055387 0.064453
0.124413 0.048828
0.08134 0.322266
0.0813 0.232422
0.05948 0.130859
0.066687 0.048828
0.094593 0.105469
0.098227 0.193359
0.058733 0.064453
0.121193 0.275391
0.06022 0.105469
0.097587 0.322266
0.094907 0.048828
0.060247 0.013672
0.057573 0.275391
0.067307 0.193359

Deep feature-selection proxies maintain uniform reduction
rates and low inference time; however, none achieve
statistical significance in this setting. This outcome suggests
higher variance and sensitivity to training dynamics,
emphasizing the need for stronger contextual conditioning
and regularization in neural gating frameworks.

Table 4 reports the number of features retained by
each feature-selection method after the selection process,
providing direct insight into the degree of dimensionality
reduction and sparsity behavior across different selection
families. The results reveal clear methodological differences
in how aggressively redundancy is eliminated.

Bio-inspired approaches display the widest variability in
selected feature count. The MSWOA-style selector reduces
the feature space to a single dominant feature, indicating
extreme sparsification driven by strong penalty terms on
subset size. Such behavior highlights the capability of whale-
optimization variants to isolate highly influential agronomic
predictors. However, this level of reduction also implies a
higher risk of information loss and sensitivity to stochastic
search dynamics. In contrast, multi-objective WOA and
dual-encoding BPSO retain larger subsets, reflecting a more
conservative trade-off between compression and predictive
stability.

Wrapper-based methods generally converge toward
moderate feature subsets. BorutaSHAP-style selection
retains a small but diverse set of features, consistent with
its “all-relevant” philosophy that favors robustness over
minimality. RFE- and SFFS-based approaches stabilize
around similar feature counts, indicating that performance-
driven greedy and recursive elimination strategies naturally

settle at an intermediate dimensionality where marginal
gains from further reduction diminish.

Embedded methods demonstrate high consistency in
feature cardinality. ElasticNet, tree-importance and SHAP-
select methods retain an identical number of features,
reflecting the influence of regularization strength and
importance-thresholding criteria. This uniformity suggests
that embedded approaches provide predictable and
reproducible sparsity patterns, which is advantageous for
deployment planning and interpretability in loT-based
agricultural systems.

Filter and deep feature-selection methods also
retain comparable feature counts, typically aligned with
predefined top-(k) selection rules or gate-thresholding
mechanisms. While such consistency ensures computational
simplicity, it also indicates limited adaptability to dataset-
specific redundancy compared with optimization-driven
methods.

Table 5 reports the RMSE performance of different
feature-selection methods evaluated across six regression
models, providing a comprehensive view of how
dimensionality reduction influences predictive accuracy
in loT-based crop yield estimation. Compared with the all-
features baseline, almost all feature-selection strategies
reduce RMSE, confirming that eliminating redundant and
noisy sensor variables improves generalization.

Among bio-inspired approaches, the MSWOA-style
selector achieves some of the lowest RMSE values across
linear and ensemble regressors, demonstrating that
aggressive compression can still preserve core predictive
information when dominant agronomic factors exist.
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Table 3: Selected Feature Count Across Feature-Selection Methods
Method

Selected_Feature_Count

Bio_ MSWOA_2024_style 1

Wrapper_BorutaSHAP_style 7

DeepFS_AutoNFS_2025_proxy 12
DeepFS_DeepPIG_2024_proxy 12
DeepFS_cSTG_2024_proxy 12
Embedded_L1_ElasticNet 12
Embedded_SHAP_select 12
Embedded_Treelmportance 12
Filter_DistanceCorr_HSIC_style 12
Filter_MI_ranking 12
Filter_ReliefF_family 12
Wrapper_RFE_RF 12
Wrapper_RFE_XGB 12
Wrapper_SFFS_CV 12

Bio_DualEncoding_BPSO_2025_style 18
Bio_MultiObjective_WOA_2024_style 20

However, performance degradation is observed for neural
regressors, indicating sensitivity to over-compression and
reduced feature diversity. Multi-objective WOA and dual-
encoding BPSO exhibit more stable RMSE behavior across
models, albeit with slightly higher error values, reflecting a
trade-off between compactness and robustness.
Wrapper-based methods show consistently strong
RMSE reductions, particularly BorutaSHAP-style selection

and SFFS-CV, which outperform the baseline across most
regressors. The effectiveness of these methods stems from
direct optimization of predictive performance and their
ability to capture non-linear feature interactions. RFE-
based approaches demonstrate moderate improvements,
suggesting that recursive elimination remains effective but
may struggle under strong feature correlation.

Embedded methods achieve reliable and stable RMSE
gains. ElasticNet reduces RMSE consistently for linear
models, confirming the benefit of regularization under
multicollinearity. Tree-importance and SHAP-select methods
further improve RMSE for ensemble regressors, with SHAP-
select delivering some of the lowest errors overall. This
indicates that attribution-based embedded selection better
preserves influential non-linear relationships compared with
raw importance scores.

Filter-based methods provide moderate RMSE
improvements. Distance-correlation and ReliefF-based
selection outperform mutual-information ranking,
highlighting the importance of capturing non-linear
dependencies and local interactions in agro-environmental
data. Nevertheless, filter methods remain less competitive
than wrapper and embedded approaches due to the
absence of model-aware optimization.

Deep feature-selection proxies exhibit mixed RMSE
performance. While linear and ridge regressors benefit from
neural gating, higher RMSE values for ensemble and neural
regressors suggest instability and sensitivity to training
dynamics. This outcome underscores the need for fully
context-conditioned gating mechanisms to realize the full
potential of deep feature selection.

Table 4: Root Mean Squared Error (RMSE) Comparison Across Feature-Selection Methods and Regression Models

Method ElasticNet LinReg MLP RF Ridge XGB
Baseline_AllFeatures 12423 1239.062 1228.554 1206.986 1228.816 1268.592
Bio_DualEncoding_BPSO_style 1196.05 1191.318 1310.685 1202.146 1191.361 1284.695
Bio_MSWOA_style 1174.999 1175518 1360.522 1177.703 1174.205 1174.885
Bio_MultiObjective_WOA_style 1198.924 1213.987 1392.678 1217.987 1187.655 1294.425
DeepFS_AutoNFS_proxy 1199.764 1199.549 1316.127 1311.547 1200.189 1509.712
DeepFS_DeepPIG_proxy 1193.485 1204.073 1353.545 1338.795 1193.837 1473.906
DeepFS_cSTG_proxy 1192.945 1192.727 1269.993 1331.783 1194.905 1425.7
Embedded_L1_ElasticNet 1190.212 1178.479 1328.35 1217413 1183.578 1312.978
Embedded_SHAP_select 1186.689 1181.029 1234.391 1193.66 1185.261 1232.262
Embedded_Treelmportance 1197.939 1191.95 1268.673 1204.651 1202.221 1261.378
Filter_DistanceCorr_HSIC_style 1183.811 1182.876 1257.763 1191.877 1187.071 1240.347
Filter_MI_ranking 1202.188 1200.63 1265.386 1232.793 1204.225 1286.81
Filter_ReliefF_family 1193.878 1194.193 1259.199 1185.195 1188.194 1246.013
Wrapper_BorutaSHAP_style 1177.796 1187.013 1245.569 1183.782 1184.173 1216.64
Wrapper_RFE_RF 1197.71 1195.383 1272.721 1206.891 1189.253 1246.41
Wrapper_RFE_XGB 1195471 1193.254 1357.192 1211.982 1189.527 1273.449
Wrapper_SFFS_CV 1180.887 1180.704 1354.494 1267.943 1174.345 1386.938
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Table 6 summarizes the MAE performance of different
feature-selection methods across six regression models,
highlighting the robustness of prediction improvements
under an absolute-error criterion. In comparison with the all-
features baseline, most feature-selection strategies achieve
noticeable reductions in MAE, indicating improved stability
and reduced sensitivity to noisy sensor measurements.
Bio-inspired methods demonstrate substantial MAE
reduction for linear and ensemble regressors. The
MSWOA-style selector achieves some of the lowest MAE
values under linear and ridge regression, confirming that

aggressive dimensionality reduction can still preserve
dominantyield-driving factors. However, higher MAE values
for neural regressors indicate that extreme sparsification
limits representational flexibility when complex non-linear
mappings are required. Multi-objective WOA and dual-
encoding BPSO exhibit more moderate but stable MAE
improvements, reflecting a balanced compromise between
compression and predictive consistency.

Wrapper-based methods show consistently strong MAE
performance. BorutaSHAP-style selection yields low MAE
across multiple regressors, demonstrating the benefit of

Table 5: Mean Absolute Error (MAE) Comparison Across Feature-Selection Methods and Regression Models

Method ElasticNet LinReg MLP RF Ridge XGB

Baseline_AllFeatures 1072.326 1070.664 1060.709 1045.148 1063.623 1079.449
Bio_DualEncoding_BPSO_style 1035.653 1032.44 1110417 1033.692 1028.835 1096.785
Bio_MSWOA _style 1030.039 1030.769 1144.619 1031.988 1028.515 1030.305
Bio_MultiObjective_ WOA_style 1043.583 1052.664 1162.929 1052.968 1032.13 1104.276
DeepFS_AutoNFS_proxy 1050.022 1051.813 1121.898 1107.304 1054.301 1260.791
DeepFS_DeepPIG_proxy 1040.906 1054.643 1129.454 1135.588 1043.299 1224.666
DeepFS_cSTG_proxy 1042.628 1044.279 1083.785 1128.708 1042.991 1196.495
Embedded_L1_ElasticNet 1041.416 1030.476 1119.338 1062.491 1036.753 1110.321
Embedded_SHAP_select 1030.37 1023.259 1047.079 1024.386 1029.043 1038.987
Embedded_Treelmportance 1045.635 1041.588 1072.861 1039.622 1048.778 1066.579
Filter_DistanceCorr_HSIC_style 1026.004 1023.409 1065.652 1021.354 1028.162 1051.279
Filter_MI_ranking 1049.097 1050.748 1090.464 1067.876 1051.107 1095.676
Filter_ReliefF_family 1036.641 1037.587 1070.736 1022.489 1032.745 1055.889
Wrapper_BorutaSHAP_style 1029.863 1036.949 1061.144 1021.211 1034.915 1041.659
Wrapper_RFE_RF 1045.991 1042.742 1074.965 1044.504 1037.458 1061.868
Wrapper_RFE_XGB 1033.282 1031.59 1144.106 1040.614 1030.111 1077.918
Wrapper_SFFS_CV 1031.289 1030.698 1137.439 1082.799 1023.416 1155.089
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Figure 2: SHAP analysis of SHAP-Based Embedded Feature Selection Technique
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Table 6: AUC-ROC Performance for Yield Regime Discrimination Across Feature-Selection Methods and Regression Models

Method ElasticNet LinReg MLP RF Ridge XGB
Baseline_AllFeatures 0.487843 0.486904 0.485634 0.509792 0.50272 0.490768
Bio_DualEncoding_BPSO_style 0.527299 0.519682 0.520053 0.534306 0.53458 0.487035
Bio_ MSWOA _style 0.519392 0.517133 0.475801 0.515668 0.515718 0.515558
Bio_MultiObjective_WOA_style 0.508109 0.498828 0.499746 0.49958 0.535352 0.481839
DeepFS_AutoNFS_proxy 0.445324 0.449166 0.485489 0.484893 0.445529 0.46718
DeepFS_DeepPIG_proxy 0.504955 0.460513 0.511609 0.499413 0.476691 0.502132
DeepFS_cSTG_proxy 0.479994 0.477696 0.476513 0.471763 0.487675 0.484677
Embedded_L1_ElasticNet 0.536156 0.549184 0.508807 0.488659 0.532508 0.501379
Embedded_SHAP_select 0.54638 0.556302 0.535286 0.552386 0.541386 0.559875
Embedded_Treelmportance 0.488067 0.489682 0.501262 0.514366 0.476543 0.532742
Filter_DistanceCorr_HSIC_style 0.558463 0.571393 0.566475 0.557581 0.557477 0.553688
Filter_MI_ranking 0.444424 0.424857 0.45977 0.46702 0.427213 0.468695
Filter_ReliefF_family 0.519501 0.525031 0.520908 0.560249 0.528988 0.542779
Wrapper_BorutaSHAP_style 0.532771 0.509499 0.513625 0.566583 0.513866 0.559974
Wrapper_RFE_RF 0.480935 0.492799 0.492824 0.49959 0.511637 0.511089
Wrapper_RFE_XGB 0.541694 0.541611 0.500891 0.520901 0.537035 0.517675
Wrapper_SFFS_CV 0.532679 0.542782 0.533196 0.49092 0.559318 0.471357

identifying all relevant features while suppressing noise
through shadow-feature comparison. SFFS-CV achieves
competitive MAE for linear and ridge models, reinforcing the
effectiveness of cross-validated greedy search in minimizing
absolute deviations. RFE-based methods provide moderate
MAE improvements, suggesting diminishing returns when
feature elimination relies solely on recursive importance
ranking.

Embedded methods achieve uniform and reliable
MAE reductions. ElasticNet performs particularly well for
linear models by stabilizing coefficient estimates under
multicollinearity. Tree-importance and SHAP-select methods
further reduce MAE for ensemble regressors, with SHAP-
select offering the most consistent improvements across
all models. This outcome highlights the advantage of
attribution-driven embedded selection in preserving both
global and local predictive contributions.

Filter-based methods deliver modest but consistent
MAE gains. Distance-correlation and ReliefF-family selection
outperform mutual-information ranking, confirming that
non-linear dependency measures and neighborhood-based
relevance better capture agronomic interactions affecting
yield magnitude.

Deep feature-selection proxies present mixed MAE
behavior. While linear models benefit from neural
gating mechanisms, higher MAE values for ensemble
and neural regressors suggest increased variance and
training sensitivity. This pattern indicates that current
proxy implementations lack sufficient regularization and

contextual conditioning to consistently minimize absolute
prediction error.

Table 7 reports the AUC-ROC values obtained by
different feature-selection methods across six regression
models, evaluating the ability to discriminate between low-
and high-yield regimes after median binarization of the yield
variable. Unlike RMSE and MAE, AUC-ROC directly reflects
decision-oriented usefulness, which is critical for operational
agronomic planning.

Among all methods, filter-based distance-correlation
selection achieves the highest AUC-ROC values overall,
particularly under linear and ridge regressors, indicating
superior discrimination capability. This highlights the
effectiveness of non-linear dependency measures in
separating yield regimes, even without model-aware
optimization. ReliefF-family filters also attain high AUC-ROC
values for ensemble models, confirming that neighborhood-
based relevance scoring captures regime-sensitive patterns.

Within embedded methods, SHAP-select consistently
records some of the highest AUC-ROC scores across all
regressors, including the top-performing values under linear,
ridge, random forest and XGBoost models. This demonstrates
that attribution-based feature selection preserves features
that are not only predictive in magnitude but also critical
for class-separating decision boundaries. ElasticNet also
performs strongly for linear models, reinforcing the role of
regularization in stabilizing discriminative signals.

Wrapper-based approaches show competitive
performance. BorutaSHAP-style selection achieves the
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highest AUC-ROC under random forest and XGBoost
regressors, reflecting the strength of all-relevant selection
in maintaining class-separating information. RFE-XGB also
records high AUC-ROC values for boosted trees, indicating
effective alignment between the selector and the underlying
model structure.

Bio-inspired methods demonstrate moderate but stable
discrimination capability. While dual-encoding BPSO and
MSWOA-style selection outperform the baseline, their
AUC-ROC values remain lower than those of SHAP-select
and distance-correlation filters, suggesting that extreme
compression prioritizes regression accuracy over regime
separability.

Deep feature-selection proxies exhibit the lowest
AUC-ROC values overall, with none achieving the top
scores for any regressor. This indicates that current proxy
implementations struggle to preserve discriminative
structure under stochastic gating and strong regularization.

Figure 2 illustrates the SHAP interaction analysis
obtained using the SHAP-based embedded feature selection
method combined with Linear Regression, Random Forest
and XGBoost models. Across all three regressors, interaction
magnitudes remain concentrated within a narrow range
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moderate second-order interactions. This interaction
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observed for this method, where RMSE is reduced from
1242.3 (all-features baseline) to 1186.7 and MAE decreases
from 1072.3 to 1030.4 while retaining only 12 features.

Notably, SHAP-select also achieves strong yield-regime
discrimination, with AUC-ROC values reaching 0.556 under
Linear Regression, 0.552 under Random Forest and 0.560
under XGBoost. The interaction plots in Figure 2 reveal stable
and symmetric patterns for temperature, soil moisture, NDVI
and spatial variables, suggesting that the performance
gains arise from additive and conditionally independent
contributions rather than strong nonlinear coupling. This
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RMSE and MAE reductions without inflating absolute R?
values, which remain pessimistic under cross-validation
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that attribution-driven embedded selection preserves
predictive and discriminative information while maintaining
interpretability and stability.

Figure 3 presents SHAP interaction plots for the distance-
correlation-based filter method across Linear Regression,
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Random Forest and XGBoost models. Compared with
embedded selection, interaction magnitudes remain
similarly bounded, typically within +0.25, but exhibit slightly
broader dispersion for NDVI-soil moisture and temperature—
spatial feature pairs. Quantitatively, this method achieves
competitive RMSE values, with the lowest RMSE of 1183.8
under ElasticNet and 1191.9 under Random Forest, while
retaining 12 features. MAE values are also among the lowest
reported, reaching 1026.0 under ElasticNet and 1021.4 under
Random Forest.

The most distinctive quantitative outcome associated
with Figure 3 is yield-regime discrimination. Distance-
correlation filtering attains the highest AUC-ROC values
across all evaluated methods, peaking at 0.571 under Linear
Regression and remaining above 0.55 for Random Forest
and XGBoost. The interaction patterns in Figure 3 suggest
that this superior discrimination arises from preserving non-
linear dependency structures rather than strong interaction
effects. The relatively diffuse but centered interaction
distributions indicate that regime separation is driven by
consistent marginal effects across multiple features. These
results demonstrate that filter-based dependency measures,
while model-agnostic, are particularly effective for decision-
oriented agronomic tasks where classification between
low- and high-yield regimes is more critical than absolute
variance explanation.

Figure 4 shows SHAP interaction plots for the Sequential
Forward Floating Selection with Cross-Validation (SFFS-CV)
wrapper method applied to Linear Regression, Random
Forest and XGBoost. Compared with Figures 2 and 3,
interaction dispersion is slightly wider for certain feature
pairs, particularly involving temporal variables and spatial
coordinates, with interaction values extending closer to
+0.3. This behavior aligns with the performance-driven
nature of SFFS-CV, which directly optimizes cross-validated
RMSE during feature subset construction.

Quantitatively, SFFS-CV achieves one of the strongest
statistically significant RMSE improvements, with a Wilcoxon
p-value of 0.0137, confirming robustness against the all-
features baseline. RMSE values fall to 1174.3 under Ridge
regression, representing one of the lowest errors observed
among all methods. However, AUC-ROC performance is
more variable, reaching 0.559 under Ridge but declining
under XGBoost to 0.471. The interaction plots in Figure 4
reflect this trade-off: stronger localized interactions improve
regression accuracy but do not consistently preserve class-
separating structure for yield regimes.

Conclusion and Future Work

This study presented a unified and systematic evaluation
of feature-selection techniques for loT-based crop-
yield prediction using smart-farming sensor data. Five
feature-selection families were compared under identical

preprocessing, regression models, repeated cross-validation
and statistical significance testing. Across all regressors,
feature selection consistently improved predictive
performance over the all-features baseline. Embedded
SHAP-based selection achieved one of the best accuracy,
reducing RMSE and MAE while retaining only 12 features.
Wrapper-based BorutaSHAP and SFFS-CV methods
yielded statistically significant RMSE improvements (p <
0.05), confirming the effectiveness of model-aware subset
evaluation. Yield regime discrimination also improved
substantially, with distance-correlation filtering and
SHAP-select achieving peak AUC-ROC values of 0.571 and
0.560, respectively. Despite comprehensive evaluation,
several limitations remain. Fixed hyperparameter settings
were used to isolate feature-selection effects, potentially
underestimating the performance of methods that benefit
from task-specific tuning. Future work should evaluate
temporal generalization (train on early seasons, test on later
seasons), incorporate domain adaptation for region shifts
and implement full-context conditional gating to learn
different feature subsets per crop-region-management
context.
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