The Implementation of Artificial Intelligence-Based Models of Postoperative Care in Paediatric Healthcare Settings
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.12.21Keywords:
Artificial Intelligence, Pediatric Pain, Postoperative Care, Multimodal Fusion, Haryana Healthcare, Affective ComputingDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Postoperative pain management in pediatric patients remains an important problem because young children cannot verbally express pain. Unrelieved pain can have adverse neurodevelopmental outcomes, but conventional intermittent monitoring is often insufficient in capturing transient pain crises, especially in resource-constrained settings. This study develops and tests an AI-based multimodal construct of continuous, automated pain surveillance but specifically within the healthcare ecosystem of Haryana, India. Employing a mixed-methods approach to research, we combined clinical data on 100 pediatric patients at four districts (Hisar, Sirsa, Rohtak and Panipat) with an AI simulation trained on multimodal data (facial expressions, cry acoustics, and physiological vitals). The classification accuracy obtained by the proposed AI model was 90.20% and Area under the Curve (AUC) was 0.93, showing a good correlation (r = 0.88, p < 0.001) with expert clinical evaluations by FLACC and Wong-Baker scales. An alert latency of less than 1 minute was shown by the system, thus significantly faster than manual rounds. Furthermore, a perception survey of 20 healthcare officials showed a high degree of acceptance of the clinical utility of the technology (mean score 4.4/5) although training gaps are a major hindrance (score 3.65/5). The findings suggest that response latency and missed high pain episodes can be considerably reduced by AI assisted monitoring by around 45%. This framework can provide an ideal, scientifically-backed answer to improving the quality of care of pediatric patients in Haryana, as long as ethical governance and structured training of personnel take priority.Abstract
How to Cite
Downloads
Similar Articles
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Kalyani K., Praveen Kumar T. D., Roopa A. N., AI-based tools for enhancing reflective practice and self-efficacy in pre-service teachers , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Priyanka, Sandeep, Tarang Shrivastava, Sandeep Kumar, Vinay Viratia, Kinesio Taping Along with PNF Stretching Improved Ankle Dorsiflexion in Children with Spastic Diplegic Cerebral Palsy , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Rashmika Vaghela, Dileep Labana, Kirit Modi, Efficient I3D-VGG19-based architecture for human activity recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- N.S.G. Ganesh, V Arulkumar, R. Lathamanju, Priscilla Joy , Energetic and highly reliable photovoltaic power source assisted water pump control system design using IoT , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- K. R. R. Prakash, Kishore Kunal, Designing information systems for business administration through human and computer interaction , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Nilesh Anute, Geetali Tilak, Revolutionizing e-Learning with AR, VR, And AI , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Milindkumar N. Dandale, Amar P. Yadav, P. S. K. Reddy, Seema G. Kadu, Madhusudana T, Manthan S. Manavadaria, Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine utilizing graph neural network approach for predicting cellular responses , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- P. Vivekananth, Navneet Sharma, Cyberbullying Detection Using Continuous Based Bag of Words with Machine Learning by Text Classification , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sanjeev Kumar, Saurabh Charaya, Rachna Mehta, Multi-Metric Evaluation Framework for Machine Learning-Based Load Prediction in e-Governance Systems , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper

