The Implementation of Artificial Intelligence-Based Models of Postoperative Care in Paediatric Healthcare Settings
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.12.21Keywords:
Artificial Intelligence, Pediatric Pain, Postoperative Care, Multimodal Fusion, Haryana Healthcare, Affective ComputingDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Postoperative pain management in pediatric patients remains an important problem because young children cannot verbally express pain. Unrelieved pain can have adverse neurodevelopmental outcomes, but conventional intermittent monitoring is often insufficient in capturing transient pain crises, especially in resource-constrained settings. This study develops and tests an AI-based multimodal construct of continuous, automated pain surveillance but specifically within the healthcare ecosystem of Haryana, India. Employing a mixed-methods approach to research, we combined clinical data on 100 pediatric patients at four districts (Hisar, Sirsa, Rohtak and Panipat) with an AI simulation trained on multimodal data (facial expressions, cry acoustics, and physiological vitals). The classification accuracy obtained by the proposed AI model was 90.20% and Area under the Curve (AUC) was 0.93, showing a good correlation (r = 0.88, p < 0.001) with expert clinical evaluations by FLACC and Wong-Baker scales. An alert latency of less than 1 minute was shown by the system, thus significantly faster than manual rounds. Furthermore, a perception survey of 20 healthcare officials showed a high degree of acceptance of the clinical utility of the technology (mean score 4.4/5) although training gaps are a major hindrance (score 3.65/5). The findings suggest that response latency and missed high pain episodes can be considerably reduced by AI assisted monitoring by around 45%. This framework can provide an ideal, scientifically-backed answer to improving the quality of care of pediatric patients in Haryana, as long as ethical governance and structured training of personnel take priority.Abstract
How to Cite
Downloads
Similar Articles
- Moyliev Gayrat, Yunuskhodjaev Akhmadkhodja, Saidov Saidamir, Babakhanov Otabek, Mirsultanov Jakhongir, To study references and analysis of an experimental model for skin burns in rats , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Deepesh Bhardwaj, Niyati Chaudhary, Green Premium: Assessing the Influence of Sustainability Features on Real Estate Market Value in Delhi NCR , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sawitri Devi, Raj Kumar, Unveiling scholarly insights: A bibliometric analysis of literature on gender bias at the workplace , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ankush Wadhwa, Sanjay Nandal, Development of an Index in Social Science: A Systematic Literature Review , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Pankaj Gupta, Niyati Chaudhary, Model Building with Antecedents and Consequences of Workplace Bullying: A SPAR-4-SLR approach using ADO-TCCM Framework with Bibliometric Analysis , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- Sahaya Jenitha A, Sinthu J. Prakash, A general stochastic model to handle deduplication challenges using hidden Markov model in big data analytics , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Madhu Bala Sharma, Pooja Yadav, A survey of attitude and behavior of Indian equity investors towards cryptocurrencies: Using smart-PLS and systematic equation modeling (SEM) approach , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Ekta Singh, Ekta Rani, Trends and Determinants of Mergers and Acquisitions in the Manufacturing Sector in India , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
<< < 11 12 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sanjeev Kumar, Saurabh Charaya, Rachna Mehta, Multi-Metric Evaluation Framework for Machine Learning-Based Load Prediction in e-Governance Systems , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper

