TALEX: Transformer-Attention-Led EXplainable Feature Selection for Sentiment Classification
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.17Keywords:
Sentiment Analysis, Transformer Attention, Explainable AI, Feature Selection, Attention Rollout, SHAP.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Feature selection plays a crucial role in sentiment analysis, especially in transformer-based architecture where large and complex feature spaces often hinder both efficiency and interpretability. Conventional statistical and heuristic selection methods fail to fully exploit transformer attention signals and typically lack faithfulness to the model’s actual decision process. This research introduces TALEX, a Transformer-Attention-Led EXplainable Feature Selection framework, designed to derive compact, discriminative, and interpretable feature subsets for sentiment classification. TALEX integrates multi-view saliency signals from transformer attention, Integrated Gradients, and SHAP to rank features, followed by differentiable gating optimized with explainability-alignment loss. Extensive experiments on four benchmark datasets: MR, CR, IMDB, and SemEval 2013, demonstrate that TALEX achieves competitive or superior accuracy while reducing feature dimensionality by 30–60%. Furthermore, deletion–insertion analyses and attribution alignment confirm high faithfulness and explanation stability. By aligning feature selection with explanation mechanisms, TALEX effectively bridges the gap between model efficiency and interpretability, providing a transparent and scalable foundation for real-world sentiment analysis applications.Abstract
How to Cite
Downloads
Similar Articles
- Rita Ganguly, Dharmpal Singh, Rajesh Bose, The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- S. TAMIL FATHIMA, K. FATHIMA BIBI, Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- G Vanitha, M Kasthuri, A robust feature selection approach for high-dimensional medical data classification using enhanced correlation attribute evaluation , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Chaotic-based optimization, based feature selection with shallow neural network technique for effective identification of intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sudheer Choudari, K. Rajasekhar, Ch. Sudheer, Comparative study of the foundation model of a 220 kV transmission line tower with different footing steps - Finite element analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Radha K. Jana, Dharmpal Singh, Saikat Maity, Modified firefly algorithm and different approaches for sentiment analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Nithya R, Kokilavani T, Joseph Charles P, Multi-objective nature inspired hybrid optimization algorithm to improve prediction accuracy on imbalance medical datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

