TALEX: Transformer-Attention-Led EXplainable Feature Selection for Sentiment Classification
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.17Keywords:
Sentiment Analysis, Transformer Attention, Explainable AI, Feature Selection, Attention Rollout, SHAP.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Feature selection plays a crucial role in sentiment analysis, especially in transformer-based architecture where large and complex feature spaces often hinder both efficiency and interpretability. Conventional statistical and heuristic selection methods fail to fully exploit transformer attention signals and typically lack faithfulness to the model’s actual decision process. This research introduces TALEX, a Transformer-Attention-Led EXplainable Feature Selection framework, designed to derive compact, discriminative, and interpretable feature subsets for sentiment classification. TALEX integrates multi-view saliency signals from transformer attention, Integrated Gradients, and SHAP to rank features, followed by differentiable gating optimized with explainability-alignment loss. Extensive experiments on four benchmark datasets: MR, CR, IMDB, and SemEval 2013, demonstrate that TALEX achieves competitive or superior accuracy while reducing feature dimensionality by 30–60%. Furthermore, deletion–insertion analyses and attribution alignment confirm high faithfulness and explanation stability. By aligning feature selection with explanation mechanisms, TALEX effectively bridges the gap between model efficiency and interpretability, providing a transparent and scalable foundation for real-world sentiment analysis applications.Abstract
How to Cite
Downloads
Similar Articles
- Vaishali Yeole, Rushikesh Yeole, Pradheep Manisekaran, Analysis and prediction of stomach cancer using machine learning , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A framework for generating explanations of machine learning models in Fintech industry , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sonal R. Vasant, Synthesis and characterization of pure and magnesium ion doped CPPD nanoparticles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Pooja Soni, Vikramaditya Dave, Sujit Kumar, Hemani Paliwal, A comparative study of AI-driven techno-economic analysis for grid-tied solar PV-fuel cell hybrid power systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, The multi-objective solid transshipment problem with preservation technology under fuzzy environment , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Suprabha Amit Kshatriya, Jaymin K Bhalani, Early detection of fire and smoke using motion estimation algorithms utilizing machine learning , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Binay Kumar Mahto, Rakesh Patel, Rajendra Bapna, Ajay Kumar Shukla, Development and Standardization of a Poly Herbal Formulation , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Hariini Chandramohan, Sethu Gunasekaran, Comparative analysis on the photocatalytic activity of titania and silica nanoparticles using dye discoloration and contact angle test , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Shefali Bahadur, Rohit Kushwaha, M. Venkatesan, Ramya Singh, Manish Mishra, Strategic alignment in multispecialty hospitals: Implementing a balanced scorecard approach for optimal performance , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.

