TALEX: Transformer-Attention-Led EXplainable Feature Selection for Sentiment Classification
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.17Keywords:
Sentiment Analysis, Transformer Attention, Explainable AI, Feature Selection, Attention Rollout, SHAP.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Feature selection plays a crucial role in sentiment analysis, especially in transformer-based architecture where large and complex feature spaces often hinder both efficiency and interpretability. Conventional statistical and heuristic selection methods fail to fully exploit transformer attention signals and typically lack faithfulness to the model’s actual decision process. This research introduces TALEX, a Transformer-Attention-Led EXplainable Feature Selection framework, designed to derive compact, discriminative, and interpretable feature subsets for sentiment classification. TALEX integrates multi-view saliency signals from transformer attention, Integrated Gradients, and SHAP to rank features, followed by differentiable gating optimized with explainability-alignment loss. Extensive experiments on four benchmark datasets: MR, CR, IMDB, and SemEval 2013, demonstrate that TALEX achieves competitive or superior accuracy while reducing feature dimensionality by 30–60%. Furthermore, deletion–insertion analyses and attribution alignment confirm high faithfulness and explanation stability. By aligning feature selection with explanation mechanisms, TALEX effectively bridges the gap between model efficiency and interpretability, providing a transparent and scalable foundation for real-world sentiment analysis applications.Abstract
How to Cite
Downloads
Similar Articles
- Ahmed Mustefa, Efficacy of coffee farmers’ cooperatives in Gimbo Woreda, Kafa Zone, Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Purnendu B. Acharjee, Bhupaesh Ghai, Muniyandy Elangovan, S. Bhuvaneshwari, Ravi Rastogi, P. Rajkumar, Exploring AI-driven approaches to drug discovery and development , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ahmed Mustefa, Validating the dairy marketing performance of Mizan-Aman town, Bench-Sheko zone, Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Prabu Gopal, M. Jeyaseelan, Familial support of rural elderly in indian family system: A sociological analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R. Sakthiraman, L. Arockiam, RFSVMDD: Ensemble of multi-dimension random forest and custom-made support vector machine for detecting RPL DDoS attacks in an IoT-based WSN environment , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- M. Menaha, J. Lavanya, Crop yield prediction in diverse environmental conditions using ensemble learning , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A framework for diabetes diagnosis based on type-2 fuzzy semantic ontology approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- M. Yamunadevi, P. Ponmuthuramalingam, A review and analysis of deep learning methods for stock market prediction with variety of indicators , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Ashutosh Pathak, Review- Significant Advancements in Electrochemical Detection of Neuron-Specific Enolase , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.

