Performance Analysis of Deep Learning Optimizers for Arrhythmia Classification using PTB-XL ECG Dataset: Emphasis on Adam Optimizer
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.04Keywords:
Deep Learning, Artificial Intelligence, Adam, Deep Learning Architecture, Activation functions, Arrhythmia.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study assesses the performance of several deep learning optimizers for arrhythmia classification via the PTB-XL ECG dataset. Deep learning (DL) based approaches, such as convolutional neural network (CNN) and recurrent neural network (RNN) have demonstrated promising results in learning discriminative feature representations of ECGs for automatic cardiac diagnosis. A CNN-LSTM based model was trained through six optimizers namely SGD, Momentum, Adagrad, Adadelta, RMSprop and Adam. The PTB-XL dataset with more than 20,000 12-lead ECGs was utilized for the classification performance comparison. Interest centred toward the Adam performance, which implies the adaptive moment estimated gradients and sets different learning rates for each learning rate. The Adam optimizer outperformed all other tested optimizers with 98.26% accuracy, 96.15% sensitivity, 97.43% specificity, 96.78% precision, and 96.46% F1-score. In comparison to other optimizers, they obtained low performance measures and reached convergence slowly. These results reveal the advantage of Adam in terms of training stability and predictive confidence for ECG-based arrhythmia classification. This research is one of the very few to systematically analyse various optimizers on PTB-XL dataset with hybrid architecture (CNN and LSTM). The experimental results confirm the superiority of Adam in ECG signal classification and provide a strong baseline for more effective deep learning model used in (cardiac) arrhythmia detection and clinical deep learning systems.Abstract
How to Cite
Downloads
Similar Articles
- Rita Ganguly, Dharmpal Singh, Rajesh Bose, The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- V Anitha, Seema Sharma, R. Jayavadivel, Akundi Sai Hanuman, B Gayathri, R. Rajagopal, A network for collaborative detection of intrusions in smart cities using blockchain technology , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A framework for generating explanations of machine learning models in Fintech industry , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Nisha Patil, Archana Bhise, Rajesh K. Tiwari, Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Sathya R., Balamurugan P, Classification of glaucoma in retinal fundus images using integrated YOLO-V8 and deep CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Pallavi M. Shimpi, Nitin N. Pise, Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Sarika A. Nirmal, Nalanda D. Wani, The Relationship Between Artificial Intelligence and Consumer Decision Making in the Context of Personalized Cosmetic Products , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- M. Rajalakshmi, V. Sulochana, Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

