Performance Analysis of Deep Learning Optimizers for Arrhythmia Classification using PTB-XL ECG Dataset: Emphasis on Adam Optimizer
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.04Keywords:
Deep Learning, Artificial Intelligence, Adam, Deep Learning Architecture, Activation functions, Arrhythmia.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study assesses the performance of several deep learning optimizers for arrhythmia classification via the PTB-XL ECG dataset. Deep learning (DL) based approaches, such as convolutional neural network (CNN) and recurrent neural network (RNN) have demonstrated promising results in learning discriminative feature representations of ECGs for automatic cardiac diagnosis. A CNN-LSTM based model was trained through six optimizers namely SGD, Momentum, Adagrad, Adadelta, RMSprop and Adam. The PTB-XL dataset with more than 20,000 12-lead ECGs was utilized for the classification performance comparison. Interest centred toward the Adam performance, which implies the adaptive moment estimated gradients and sets different learning rates for each learning rate. The Adam optimizer outperformed all other tested optimizers with 98.26% accuracy, 96.15% sensitivity, 97.43% specificity, 96.78% precision, and 96.46% F1-score. In comparison to other optimizers, they obtained low performance measures and reached convergence slowly. These results reveal the advantage of Adam in terms of training stability and predictive confidence for ECG-based arrhythmia classification. This research is one of the very few to systematically analyse various optimizers on PTB-XL dataset with hybrid architecture (CNN and LSTM). The experimental results confirm the superiority of Adam in ECG signal classification and provide a strong baseline for more effective deep learning model used in (cardiac) arrhythmia detection and clinical deep learning systems.Abstract
How to Cite
Downloads
Similar Articles
- Rajesh Kumar Singh, Abhishek Kumar Mishra, Ramapati Mishra, Hand Gesture Identification for Improving Accuracy Using Convolutional Neural Network(CNN) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Amit Maru, Dhaval Vyas, Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, Swarm intelligence-driven HC2NN model for optimized COVID-19 detection using lung imaging , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Archana G, Vijayalakshmi V, Improving classification precision for medical decision systems through big data analytics application , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Ramkumar, K. Aanandha Saravanan, Martin Joel Rathnam, M. Revathy, Integration of AI and agent-based modeling for simulating human-ecological systems , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- B. Kalpana, P. Krishnamoorthy, S. Kanageswari, Anitha J. Albert, Machine learning approaches for predicting species interactions in dynamic ecosystems , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Saba Naaz, K.B. Shiva Kumar, Integrated deep learning classification of Mudras of Bharatanatyam: A case of hand gesture recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- D. Padma Prabha, C. Victoria Priscilla, A combined framework based on LSTM autoencoder and XGBoost with adaptive threshold classification for credit card fraud detection , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.

