Performance Analysis of Deep Learning Optimizers for Arrhythmia Classification using PTB-XL ECG Dataset: Emphasis on Adam Optimizer
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.04Keywords:
Deep Learning, Artificial Intelligence, Adam, Deep Learning Architecture, Activation functions, Arrhythmia.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study assesses the performance of several deep learning optimizers for arrhythmia classification via the PTB-XL ECG dataset. Deep learning (DL) based approaches, such as convolutional neural network (CNN) and recurrent neural network (RNN) have demonstrated promising results in learning discriminative feature representations of ECGs for automatic cardiac diagnosis. A CNN-LSTM based model was trained through six optimizers namely SGD, Momentum, Adagrad, Adadelta, RMSprop and Adam. The PTB-XL dataset with more than 20,000 12-lead ECGs was utilized for the classification performance comparison. Interest centred toward the Adam performance, which implies the adaptive moment estimated gradients and sets different learning rates for each learning rate. The Adam optimizer outperformed all other tested optimizers with 98.26% accuracy, 96.15% sensitivity, 97.43% specificity, 96.78% precision, and 96.46% F1-score. In comparison to other optimizers, they obtained low performance measures and reached convergence slowly. These results reveal the advantage of Adam in terms of training stability and predictive confidence for ECG-based arrhythmia classification. This research is one of the very few to systematically analyse various optimizers on PTB-XL dataset with hybrid architecture (CNN and LSTM). The experimental results confirm the superiority of Adam in ECG signal classification and provide a strong baseline for more effective deep learning model used in (cardiac) arrhythmia detection and clinical deep learning systems.Abstract
How to Cite
Downloads
Similar Articles
- Murugaraju P, A. Edward William Benjamin, Efficacy of multimedia courseware in achievement in Mathematics , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Karthik Gangadhar, Prem Kumar N, Neuroprotective activity of alcoholic extract of Operculina turpethum roots in aluminum chloride-induced Alzheimer’s disease in rats , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Amalraj . P, Vinodkumar P. B., Existence of a homeomorphism from the space of continuous functions to the space of compact Subsets of a topological space, X , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Himadri Nalinkumar Raval, Effective strategies in English language teaching: Enhancing writing proficiency among learners , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- P. J. Robinson, S. W. A. Prakash, Stochastic artificial neural network for magdm problem solving in intuitionistic fuzzy environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Amita Gupta, A study of the scientific approach inherited in the Indian knowledge system (IKS) , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Shobhit Shukla, Suman Mishra, Gaurav Goel, River flow modeling for flood prediction using machine learning techniques in Godavari river, India , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Gurpreet S. Saund, Kulandai Samy, Eco-critical dystopia and anthropocentrism in Margaret Atwood’s Oryx and Crake , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- C. Mohan Raj, M. Sundaram , M. Anand, Automation of industrial machinerie , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
<< < 9 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.

