Performance Analysis of Deep Learning Optimizers for Arrhythmia Classification using PTB-XL ECG Dataset: Emphasis on Adam Optimizer
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.04Keywords:
Deep Learning, Artificial Intelligence, Adam, Deep Learning Architecture, Activation functions, Arrhythmia.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study assesses the performance of several deep learning optimizers for arrhythmia classification via the PTB-XL ECG dataset. Deep learning (DL) based approaches, such as convolutional neural network (CNN) and recurrent neural network (RNN) have demonstrated promising results in learning discriminative feature representations of ECGs for automatic cardiac diagnosis. A CNN-LSTM based model was trained through six optimizers namely SGD, Momentum, Adagrad, Adadelta, RMSprop and Adam. The PTB-XL dataset with more than 20,000 12-lead ECGs was utilized for the classification performance comparison. Interest centred toward the Adam performance, which implies the adaptive moment estimated gradients and sets different learning rates for each learning rate. The Adam optimizer outperformed all other tested optimizers with 98.26% accuracy, 96.15% sensitivity, 97.43% specificity, 96.78% precision, and 96.46% F1-score. In comparison to other optimizers, they obtained low performance measures and reached convergence slowly. These results reveal the advantage of Adam in terms of training stability and predictive confidence for ECG-based arrhythmia classification. This research is one of the very few to systematically analyse various optimizers on PTB-XL dataset with hybrid architecture (CNN and LSTM). The experimental results confirm the superiority of Adam in ECG signal classification and provide a strong baseline for more effective deep learning model used in (cardiac) arrhythmia detection and clinical deep learning systems.Abstract
How to Cite
Downloads
Similar Articles
- Hannah Ayaba Tanye, Henry Akwetey Matey, Isaac Asampana, Albert Akanlisikum Akanferi, Douglas Yeboah , Augustina Dede Agor, Assessing the information security awareness among Ghanaian University students , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- ATANU BHATTACHARYYA, P. S. DATTA, ASIM BHAUMIK, SHASHIDHAR VIRAKTAMATH, MORSHED U. CHOWDHURY, RAJENDRA KUMAR ISAAC, TINY DEVICES- NANO - THE EMERGING WORLD TECHNOLOGY , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- C. S. Manikandababu, V. Rukkumani, Advanced VLSI-based digital image contrast enhancement: A novel approach with modified image pixel evaluation logic , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- R. Thiagarajan, S. Prakash Kumar, Performance of public transport appraisal using machine learning , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- M. Iniyan, A. Banumathi, The WBANs: Steps towards a comprehensive analysis of wireless body area networks , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.

