Location Specific Paddy Yield Prediction using Monte Carlo Simulation incorporated Long Short-Term Memory
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.10.10Keywords:
Paddy yield prediction, Fuzzy logic, Monte Carlo simulation, LSTM, Agricultural forecastingDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Accurately predicting paddy yield is vital for food security and efficient farm management. This work proposes LSPYP-ML, a framework that combines fuzzy logic, Monte Carlo simulation, and Long Short-Term Memory (LSTM) networks to improve prediction accuracy. The fuzzy module cleans and classifies uncertain data such as rainfall, temperature, and pesticide use. The Monte Carlo module simulates extreme weather scenarios to account for environmental variability. Finally, the LSTM module captures temporal patterns in climate and yield data for robust forecasting. Experiments show that the framework achieves higher accuracy, precision, sensitivity, specificity, and F-Score compared to existing methods. LSPYP-ML offers a reliable decision-support tool for farmers and policymakers to enhance productivity and manage climate risks.Abstract
How to Cite
Downloads
Similar Articles
- U. Johns Praveena, J. Merline Vinotha, A New Approach for Solving Bilevel Fractional/quadratic Green Transportation Problem by Implementing AI with Multi Choice Parameters Under Uncertainty , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- S ChandraPrabha, S. Kantha Lakshmi, P. Sivaraaj, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Saarumathi R, Ritha W, Conglomerate Charge and Merchandise Swayed Inventory Model for Fragile Vendibles , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- P. Janavarthini, Dr. I. Antonitte Vinoline, Green inventory model for growing items with constraints under demand uncertainty , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Kowsalya Ramasamy, Thiyagarajan Krishnan, Performance analysis of RF substrate materials in ISM band antenna applications , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- B. Nivedetha, Water Quality Prediction using AI and ML Algorithms , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Tassar Aniam, Sneha Kanade, A study on the inventory management of perishable products , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Naghma Khatoon, Equabal Jawaid, ECOLOGY AND PARTIAL RESTORATION OF MONE WETLAND FOR FISH PRODUCTIVITY , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.

