
Abstract
Accurately predicting paddy yield is vital for food security and efficient farm management. This work proposes LSPYP-ML, a framework 
that combines fuzzy logic, Monte Carlo simulation, and Long Short-Term Memory (LSTM) networks to improve prediction accuracy. The 
fuzzy module cleans and classifies uncertain data such as rainfall, temperature, and pesticide use. The Monte Carlo module simulates 
extreme weather scenarios to account for environmental variability. Finally, the LSTM module captures temporal patterns in climate 
and yield data for robust forecasting. Experiments show that the framework achieves higher accuracy, precision, sensitivity, specificity, 
and F-Score compared to existing methods. LSPYP-ML offers a reliable decision-support tool for farmers and policymakers to enhance 
productivity and manage climate risks.
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Introduction
Predicting crop yields accurately is essential for ensuring 
food security and helping farmers and policymakers make 
better decisions. Paddy, being a staple crop, is particularly 
vulnerable to changes in rainfall, temperature, and pest 
activity, which makes its yield difficult to forecast [1], [2]. With 
climate change adding to this unpredictability, traditional 
models struggle to capture the true complexity of yield 
fluctuations [3].Older statistical and machine learning 
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models tend to rely too much on fixed patterns in historical 
data. This makes them less effective when dealing with 
uncertainties like irregular rainfall, sudden temperature 
shifts, or noisy and incomplete records [4], [5]. Modern 
techniques such as fuzzy logic, probabilistic simulations, 
and deep learning are better suited because they can 
handle these uncertainties and reveal complex patterns in 
agricultural data [6].

Recent innovations in artificial intelligence have further 
improved yield prediction. Methods like LSTM [8] and CNNs 
[9] are now capable of capturing both temporal and spatial 
variations in crop growth. At the same time, IoT devices and 
satellite-based remote sensing provide continuous field 
data [10], while cloud and edge computing make analysis 
faster and more accessible. Even quantum computing is 
being explored for its ability to process vast datasets more 
efficiently [7].Since growing conditions vary widely across 
regions, location-specific prediction models are far more 
reliable than generalized ones. By tailoring forecasts to local 
soil, climate, and farming practices, farmers can optimize 
irrigation, fertilization, and pest control. This study presents 
LSPYP-ML, a framework that combines fuzzy logic, Monte 
Carlo simulation, and LSTM networks to better manage 
uncertainties, capture time-based trends, and deliver 
accurate location-specific forecasts for paddy yield.

2. Existing Methods
Several advanced approaches have been proposed for crop 
yield prediction, combining deep learning, hybrid modeling, 
and emerging computing technologies. A hybrid quantum 
deep learning model integrated Bi-LSTM, XGBoost, and 
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quantum circuits to boost rice yield forecasting accuracy 
[11]. Deep learning models such as CNN-LSTM with attention 
have been applied to multi-source datasets in Northeast 
China for predicting maize, rice, and soybean yields [12]. 
Other works introduced deep neural network frameworks 
that considered climate change impacts on crop yields in 
Australia [13], while hybrid feature selection with optimized 
machine learning improved predictive efficiency by focusing 
on relevant variables [14]. These methods demonstrate the 
potential of AI-driven forecasting but still face challenges 
in handling environmental uncertainties, extreme weather 
events, and location-specific variations, highlighting the 
need for more robust solutions.

The key points about these methods are enumerated 
in Table 1.

Existing methods improve yield prediction but still 
struggle with environmental uncertainties, extreme 
weather, and location-specific variations, highlighting the 
need for more advanced models.

Background
Fuzzy logic and Long Short-Term Memory (LSTM) networks 
have emerged as key techniques for predictive modeling 
under uncertainty. Fuzzy logic is effective for handling 
vague or imprecise environmental factors such as rainfall, 
temperature, and pesticide use by classifying them into 
linguistic categories like “low,” “moderate,” or “high” [15]. 
This approach improves reliability when data is incomplete 
or noisy, making it more adaptable for real-world agricultural 
applications. It also supports expert-driven rule-based 
decision-making, which enhances interpretability and 
transparency.

LSTM networks, on the other hand, are powerful 
deep learning models designed to capture long-term 
dependencies in sequential data, overcoming the vanishing 
gradient issues of traditional RNNs [16], [17]. They are 
particularly suited for agricultural forecasting, where 

historical weather and soil patterns influence future yields. By 
integrating fuzzy logic preprocessing with LSTM forecasting, 
predictive frameworks can combine structured expert 
knowledge with advanced temporal modeling, resulting 
in more accurate and robust paddy yield predictions under 
dynamic environmental conditions.

Proposed Method
The LSPYP-ML framework consists of three modules—Fuzzy-
based Domain-driven Data Preprocessor (FDDP), Monte 
Carlo Simulation for Environmental Variables (MCSEV), and 
LSTM-based Yield Prediction (LYP)—which work together 
to handle uncertainty, model environmental variability, and 
deliver accurate yield forecasts.

Fuzzy based Domain-driven Data Preprocessor
The Fuzzy-based Domain-driven Data Preprocessor (FDDP) 
uses fuzzy logic to manage uncertainty in agricultural data 
such as rainfall, temperature, pesticide use, and crop yield. 
It converts continuous values into categories for easier 
interpretation, handles missing or noisy records with 
membership functions, and applies imputation techniques 
to keep datasets accurate and complete. Key yield prediction 
factors and their units are listed in Table 2.

These input parameters are treated as a Set in FDDP 
module, represented as { }0 0 0 01 2 12,ρ ρ ρ= …

t t ttP  where 0 01 2,ρ ρ …
t t  are 

the input parameters at timestamp 0t , given in the same 
sequence as in Table 2.

Table 1: Existing methods Key points

Author Work Methodology Advantages Limitations

De Rosal Ignatius 
Moses Setiad 
et.al.,

Hybrid Quantum Deep Learning 
Model (HQDLM)

Quantum 
computing, Bi-LSTM, 
XGBoost

High predictive accuracy 
for rice yield, Enhanced 
feature extraction 

Relies on quantum 
simulators, Requires high 
computational resources, .

Jian Lu et al.
Deep Learning for Multi-
Source Data-Driven Crop Yield 
Prediction (DLMSDD)

CNN, LSTM, Attention 
mechanism, kNDVI, 

Superior accuracy in crop 
yield prediction, 
 Enhances feature 
extraction

Heavily relies on high-quality 
multi-source data, 
Computational complexity

Haydar Demirhan
Deep Learning Framework for 
Crop Yield Prediction in Australia 
(DLFCC)

Deep neural network 
(DNN), 

Outperforms benchmark 
models,  
High flexibility in handling 
low-frequency data,

Short observation period and 
limited availability of climate 
change proxies

Mahmoud 
Abdel-Salam 
et al.

Hybrid Feature Selection 
Approach and Optimized 
Machine Learning (HFSAOML)

Hybrid feature 
selection, K-means 
clustering, 

Hybrid feature selection 
improves model efficiency,

 Limited applicability to other 
agricultural contexts or crop 
types.

Figure 1: Fuzzy Logic
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Interpolation based Missing Value Estimator (IMVE), Fuzzy 
Anomaly Detector (FAD) and Fuzzy Data Classifier (FDC) 
are the three fundamental components used to build the 
FDDP Module. 

Interpolation based Missing Value Estimator
The Interpolation-based Missing Value Estimator (IMVE) fills 
data gaps by using interpolation to predict missing values 
from existing patterns. This keeps datasets consistent, 
reduces bias from random imputation, and preserves 
quality for reliable analysis, especially when gaps are small 
and trends are predictable.Since the input parameters 
are measured periodically in different timestamps, the 
parameters sets are portioned out for different timestamps  

1 2 3, , …t t t  such as 
1 2 3
, , …t t tP P P . Then for any missing x th 

parameter value ρ tyx  at yt th timestamp can be calculated 
using equation 1. 

   

Equation (1)
IMVE works by assigning higher weights to nearby 

known data points and lower weights to distant ones, 
ensuring smooth transitions through missing values. This 
weighted interpolation preserves natural trends, maintains 
consistency, and provides reliable estimates for use in 
agriculture, environmental monitoring, and predictive 
modeling.

Fuzzy Anomaly Detector
The Fuzzy Anomaly Detector (FAD) uses fuzzy logic to spot 
outliers in uncertain or noisy agricultural data. Instead of 
strict thresholds, it applies graded membership functions, 
making detection more flexible and reducing false positives. 

This helps identify errors or abnormal events in large, 
variable datasets with greater reliability.
Algorithm 1: FAD
Input: 

1 2 3
, , 

nt t t tP P P P…
Output: Input parameter anomalies
Step 1: Load input data Sets 

1 2 3
, , 

nt t t tP P P P…
Step 2: i 1 12∀ = → :=
Step 3: Let 

ty

min
iρ  and ty

max
iρ  be the minimum and maximum 

values of any parameter tyiρ

Step 4: 

Step 5: Compute 
1t tj ji iρ ρ
+

∆ = −

Step 6: 
  

 
ty

ty

ty

min
imin

i min
i

if

otherwise

ρ
ρ

ρ

 ∆ ∆ <= 


Step 7: 
  

 
ty

ty

ty

max
imax

i max
i

if

otherwise

ρ
ρ

ρ

 ∆ ∆ >= 


Step 8: end j∀
Step 9: end i∀
Step 10: Let 

1nt
P

+
 be the new input data with members 

{ }
1 1 11 2 12,

t t tn n n
ρ ρ ρ

+ + +
…

Step 11:  

Step 12: 1
  

                             
t t ty n y

min max
i i iFALSE if

Anomaly
TRUE otherwise

ρ ρ ρ
+

 ≤ ≤= 


Step 13: end i∀
Step 14: return

The Fuzzy Anomaly Detector module identif ies 
anomalies by applying above algorithm 1, which utilizes 
fuzzy logic for flexible and precise detection. By handling 
uncertainty and imprecise data, it effectively differentiates 
normal patterns from outliers. This ensures accurate 
anomaly detection in large, noisy datasets across various 
domains.

Fuzzy Data Classifier
The Fuzzy Data Classifier (FDC) assigns data to overlapping 
categories using fuzzy logic, allowing partial membership 
instead of rigid boundaries. This flexible approach is well-
suited for ambiguous agricultural datasets, providing more 
nuanced classifications and supporting better decision-
making where traditional methods fall short. Let ty

norm
xρ  

be the normalized value of an input parameter xρ  at yth 
timestamp which is calculated using equation 2. 

( )t ty y

ty
t ty y

min
x xnorm

x max min
x x

ρ ρ
ρ

ρ ρ

−
=

−
			   Equation (2)

Then the input parameters values are classified by equation 
3 as follows

Table 2: Input parameters’ details

S. No Parameter Context Unit

1 Rainfall Climatic mm

2 Temperature Climatic °C

3 Humidity Climatic %

4 Solar Radiation Climatic W/m²

5 Wind Speed Climatic km/h

6 Soil pH Soil H⁺

7 Soil Moisture Soil %

8 Organic Matter Soil %

9 Pesticide Use Agronomic kg/ha

10 Fertilizer Use Agronomic kg/ha

11 Land Surface Temperature Environmental °C

12 Evapotranspiration Environmental mm/day
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( ) 
tyxClassification ρΨ =

1 
3

1 2  
3 3

   

ty

ty

norm
x

norm
x

Lowif

Moderateif

Highotherwise

ρ

ρ

 <

 ≤ <




	 Equation (3)

In this module, fuzzy logic classifies environmental variables 
into categories such as “Low,” “Moderate,” or “High,” making 
data more interpretable. This ensures the dataset is clean, 
consistent, and reliable for further analysis.

Monte Carlo Simulation for Environmental Variables
Monte Carlo Simulation for Environmental Variables (MCSEV) 
models uncertainty by simulating different scenarios 
for rainfall, temperature, humidity, and solar radiation, 
producing a range of outcomes that make yield forecasts 
more resilient to real-world variability.For every normal input 
parameter Set 

yt
P , the Monte Carlo simulated variable set 

yt
PΞ   

is computed using the following algorithm.

Algorithm 2: Monte Carlo Simulated Variable 
Calculation

Input: 
1 2 3
, , 

nt t t tP P P P…

Output: 
1 2 3

, , ,
nt t t tP P P PΞ Ξ Ξ Ξ…

Step 1: Load input data 
1

 
nt tP P→

Step 2: Let Γ  be the set of mean and standard deviation 

2-tuple set as ( ) ( ){ }1 1 12 12
, , ,ρ ρ ρ ρµ σ µ σ…

Step 3:  Compute  
iρ

µ  and 
iρ

σ ∈Γ

Step 4. For i 1 n= →

Step 5: Set Distribution ( )N Γ

Step 6: Compute e ti

i

P
tPΞ = as Log-normal

Step 7: End for i

Step 8: return
The normal input parameters sets

1 nt tP P… , along with 
their individual members classifications, and the Monte 
Carlo simulated parameters sets

1 nt tP PΞ Ξ… will serve as the 
foundational data for the LSTM-based Yield Prediction 
module. 

LSTM based Yield Prediction (LYP)
The LYP module uses outputs from FDDP and MCSEV—
combining deterministic and probabilistic data—to 
enhance yield prediction accuracy. It applies LSTM’s core 
components, with equations for the Forget Gate, Input Gate, 
Candidate Cell State, Cell State Update, Output Gate, and 
Hidden State Update, ensuring robust temporal modeling.
LYP Forget Gate equation:

	 Equation (4)

where tf  is the activation function of forget gate, fw  is the 
forget gate weight, fb  is the bias value, ⨂ refers a dedicated 
impact operator 
LYP Input Gate equation:

	 Equation (5)

Where ti  is the Input gate activation function, iw  and  tb  
are the weight and bias of input gate
LYP Candidate Cell State equation:

	 Equation (6)

where tC  is the cell state activation function, cw  and cb  are 
the weight and bias of candidate cell state function
LYP Cell State Update equation:

1t t t t tC f C i C−= + 





		  Equation (7)

where tC  refers the updated cell state
LYP Output Gate equation:

       Equation (8)

Where to  is the Input gate activation function, ow  and  ob  
are the weight and bias of output gate
LYP Hidden State Update equation:

( )tanht t th o C=  			   Equation (9)

where th  is the final output of LYP-LSTM cell
The LYP module processes both normal input parameters 

and Monte Carlo simulated variables to enhance yield 
prediction accuracy. By integrating uncertainty-aware 
simulations, the LYP module dynamically updates its 
memory state, allowing it to learn complex patterns in 
agricultural data. The combination of deterministic and 
probabilistic inputs ensures that the model accounts for 
variations in environmental conditions, making predictions 
more robust. The LYP module leverages these diverse inputs 
to refine its internal representations and improve decision-
making. An illustration of proposed LYP Architecture is 
provided in Figure 2.

This approach significantly enhances the reliability of 
yield forecasts by incorporating real-world uncertainties. 
Ultimately, the LYP module provides a more adaptive and 
data-driven framework for agricultural yield prediction.

Experimental Setup
The experimental setup for the LSPYP-ML framework 
was implemented on a system with an Intel Core i7 (3.8 
GHz) processor, 16GB RAM, and a 1TB NVMe M.2 SSD. 
Development was conducted in Visual Studio IDE [19] using 
C++ 23.0 [20] with Microsoft Foundation Classes (MFC) 
[21] for the dedicated UI and Advanced C 24.0 Library for 
optimized computations, efficient memory management 
and parallel processing capabilities to handle large-scale 
agricultural datasets seamlessly.. The FDDP module utilized 
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Figure 2: LYP LSTM Architecture

Table 3: Accuracy

Accuracy (%)

Timestamp HQDLM DLMSDD DLFCC HFSAOML LSPYPML

1 95.30437 80.31421 81.29726 77.521339 97.335625

2 95.15336 80.13043 80.85357 77.2724 97.410736

3 95.15365 79.83714 81.40273 77.92601 97.175606

4 95.6113 80.30492 81.34583 77.854393 96.872795

5 94.9491 80.23478 81.21953 77.626511 97.033646

6 95.13113 80.1753 81.17243 77.527046 97.09581

7 95.03204 80.41753 81.57651 77.401398 96.826363

8 94.93655 80.27249 81.70128 77.409554 97.253227

9 95.2278 80.0099 81.09645 77.571686 96.923164

10 95.53943 80.53426 81.02496 77.631439 96.752747

Table 4: Precision

Precision (%)

Timestamp HQDLM DLMSDD DLFCC HFSAOML LSPYPML

1 94.63306 82.44935 79.47427 77.901299 96.028694

2 94.47423 82.23538 79.02873 77.853188 96.423721

3 94.28311 81.78342 79.59053 78.144264 96.274254

4 94.62369 82.62614 79.77153 78.632759 95.695915

5 93.72188 82.22311 79.17042 77.886955 95.659805

6 94.56387 82.4773 78.72392 78.116646 95.890755

7 93.93199 82.37688 79.59149 77.586342 96.126762

8 93.8521 82.08076 79.57638 78.248611 96.198143

9 93.93322 82.2313 79.35983 77.903648 96.086571

10 94.75791 82.55996 78.51454 78.08007 95.758224

fuzzy logic to classify environmental variables (rainfall, 
temperature, pesticide usage) and handle missing or noisy 
data. MCSEV employed probabilistic modeling to generate 
synthetic datasets, simulating extreme weather scenarios. 

The LYP module leveraged LSTM networks to capture 
temporal dependencies in climate and yield data, enhancing 
location-specific forecasting. The UI is designed in a way to 
prepare working folders, load dataset, extract dataset, load 
different methodologies one-by-one in sequence, log the 
benchmark parameters at different timestamps during the 
execution, generate report and graphs. 

Results and Analysis
The LSPYP-ML framework consistently outperformed 
existing methods (HQDLM, DLMSDD, DLFCC, HFSAOML) 
across all evaluation metrics—Accuracy, Precision, 
Sensitivity, Specificity, and F-Score. It achieved an average 
accuracy of about 97.07%, precision of 96.04%, sensitivity 
of 98.19%, specificity of 96.22%, and F-Score of 97.14%, 
ranking first in every category. Performance fluctuations 
across timestamps were minimal, demonstrating stability 
and robustness. These results confirm that integrating 
fuzzy preprocessing, Monte Carlo simulations, and LSTM 
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Table 5: Sensitivity

Sensitivity (%)

Timestamp HQDLM DLMSDD DLFCC HFSAOML LSPYPML

1 95.92091 79.07272 82.48154 77.313774 98.606125

2 95.7751 78.91322 82.02229 76.959244 98.365494

3 95.95374 78.71924 82.58369 77.804642 98.041656

4 96.53037 78.96044 82.36486 77.427429 98.002663

5 96.08012 79.07843 82.55366 77.483353 98.362495

6 95.64902 78.84718 82.77757 77.206238 98.258911

7 96.04507 79.27051 82.88194 77.300423 97.490852

8 95.93278 79.21589 83.10832 76.957176 98.271835

9 96.42995 78.73333 82.21538 77.389839 97.721634

10 96.26254 79.34537 82.66502 77.385712 97.701553

Table 6: Specificity

Specificity (%)

Timestamp HQDLM DLMSDD DLFCC HFSAOML LSPYPML

1 94.70417 81.66646 80.19631 77.732079 96.129852

2 94.54828 81.45464 79.76716 77.592918 96.49295

3 94.38094 81.04561 80.30438 78.048447 96.340225

4 94.72783 81.7803 80.389 78.294868 95.794891

5 93.87228 81.48691 79.99046 77.771172 95.775871

6 94.62486 81.63162 79.71717 77.855522 95.987465

7 94.06262 81.65811 80.37078 77.503136 96.180206

8 93.98261 81.40839 80.40896 77.877365 96.276711

9 94.08633 81.40517 80.05265 77.755966 96.15097

10 94.83859 81.82356 79.54172 77.881607 95.84095

Table 7: F-Score

F-Score (%)

Timestamp HQDLM DLMSDD DLFCC HFSAOML LSPYPML

1 95.27264 80.72575 80.94998 77.60643 97.300354

2 95.12022 80.54005 80.49769 77.403641 97.384926

3 95.11109 80.22208 81.05949 77.974091 97.149918

4 95.56753 80.75171 81.04746 78.025444 96.835556

5 94.88635 80.62012 80.82665 77.684624 96.992325

6 95.10335 80.6214 80.69988 77.658775 97.060394

7 94.97678 80.79384 81.20339 77.443123 96.804008

8 94.88104 80.62289 81.304 77.597519 97.22393

9 95.1652 80.44431 80.76237 77.645889 96.897209

10 95.5043 80.92075 80.53634 77.731339 96.720131

significantly improves yield prediction reliability under 
uncertain and variable. The measured results during the 
evaluation are provided in the following tables.

Conclusion
This study introduced the LSPYP-ML framework, which 
combines fuzzy preprocessing (FDDP), Monte Carlo 
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simulations (MCSEV), and LSTM forecasting (LYP) to improve 
paddy yield prediction. By addressing uncertainty, simulating 
environmental variability, and capturing temporal patterns, 
the model achieved superior performance across all 
evaluation metrics, proving robust and reliable for location-
specific forecasting. The system supports real-time decision-
making, offering farmers and policymakers actionable 
insights to boost productivity and manage climate risks. 
Future work may extend the framework by incorporating 
additional environmental factors, optimizing deep learning 
architectures, and integrating satellite or IoT-based data for 
broader agricultural applications.

Code Availability
Code and datasets are provided online and the links will be 
provided through E-Mail requests to the authors
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