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Location Specific Paddy Yield Prediction using Monte Carlo
Simulation incorporated Long Short-Term Memory

V. Mahalakshmi'*, M. Manimekalai?

Abstract

Accurately predicting paddy yield is vital for food security and efficient farm management. This work proposes LSPYP-ML, a framework
that combines fuzzy logic, Monte Carlo simulation, and Long Short-Term Memory (LSTM) networks to improve prediction accuracy. The
fuzzy module cleans and classifies uncertain data such as rainfall, temperature, and pesticide use. The Monte Carlo module simulates
extreme weather scenarios to account for environmental variability. Finally, the LSTM module captures temporal patterns in climate
and yield data for robust forecasting. Experiments show that the framework achieves higher accuracy, precision, sensitivity, specificity,
and F-Score compared to existing methods. LSPYP-ML offers a reliable decision-support tool for farmers and policymakers to enhance

productivity and manage climate risks.
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Introduction

Predicting crop yields accurately is essential for ensuring
food security and helping farmers and policymakers make
better decisions. Paddy, being a staple crop, is particularly
vulnerable to changes in rainfall, temperature, and pest
activity, which makes its yield difficult to forecast [1], [2]. With
climate change adding to this unpredictability, traditional
models struggle to capture the true complexity of yield
fluctuations [3].0lder statistical and machine learning
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models tend to rely too much on fixed patterns in historical
data. This makes them less effective when dealing with
uncertainties like irregular rainfall, sudden temperature
shifts, or noisy and incomplete records [4], [5]. Modern
techniques such as fuzzy logic, probabilistic simulations,
and deep learning are better suited because they can
handle these uncertainties and reveal complex patterns in
agricultural data [6].

Recent innovations in artificial intelligence have further
improved yield prediction. Methods like LSTM [8] and CNNs
[9] are now capable of capturing both temporal and spatial
variations in crop growth. At the same time, loT devices and
satellite-based remote sensing provide continuous field
data [10], while cloud and edge computing make analysis
faster and more accessible. Even quantum computing is
being explored for its ability to process vast datasets more
efficiently [7].Since growing conditions vary widely across
regions, location-specific prediction models are far more
reliable than generalized ones. By tailoring forecasts to local
soil, climate, and farming practices, farmers can optimize
irrigation, fertilization, and pest control. This study presents
LSPYP-ML, a framework that combines fuzzy logic, Monte
Carlo simulation, and LSTM networks to better manage
uncertainties, capture time-based trends, and deliver
accurate location-specific forecasts for paddy yield.

2. Existing Methods

Several advanced approaches have been proposed for crop
yield prediction, combining deep learning, hybrid modeling,
and emerging computing technologies. A hybrid quantum
deep learning model integrated Bi-LSTM, XGBoost, and
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guantum circuits to boost rice yield forecasting accuracy
[11]. Deep learning models such as CNN-LSTM with attention
have been applied to multi-source datasets in Northeast
China for predicting maize, rice, and soybean yields [12].
Other works introduced deep neural network frameworks
that considered climate change impacts on crop yields in
Australia [13], while hybrid feature selection with optimized
machine learning improved predictive efficiency by focusing
on relevant variables [14]. These methods demonstrate the
potential of Al-driven forecasting but still face challenges
in handling environmental uncertainties, extreme weather
events, and location-specific variations, highlighting the
need for more robust solutions.

The key points about these methods are enumerated
in Table 1.

Existing methods improve yield prediction but still
struggle with environmental uncertainties, extreme
weather, and location-specific variations, highlighting the
need for more advanced models.

Background

Fuzzy logic and Long Short-Term Memory (LSTM) networks
have emerged as key techniques for predictive modeling
under uncertainty. Fuzzy logic is effective for handling
vague or imprecise environmental factors such as rainfall,
temperature, and pesticide use by classifying them into
linguistic categories like “low,” “moderate,” or “high” [15].
This approach improves reliability when data is incomplete
or noisy, making it more adaptable for real-world agricultural
applications. It also supports expert-driven rule-based
decision-making, which enhances interpretability and
transparency.

LSTM networks, on the other hand, are powerful
deep learning models designed to capture long-term
dependencies in sequential data, overcoming the vanishing
gradient issues of traditional RNNs [16], [17]. They are
particularly suited for agricultural forecasting, where

historical weather and soil patterns influence future yields. By
integrating fuzzy logic preprocessing with LSTM forecasting,
predictive frameworks can combine structured expert
knowledge with advanced temporal modeling, resulting
in more accurate and robust paddy yield predictions under
dynamic environmental conditions.

Proposed Method

The LSPYP-ML framework consists of three modules—Fuzzy-
based Domain-driven Data Preprocessor (FDDP), Monte
Carlo Simulation for Environmental Variables (MCSEV), and
LSTM-based Yield Prediction (LYP)—which work together
to handle uncertainty, model environmental variability, and
deliver accurate yield forecasts.

Fuzzy based Domain-driven Data Preprocessor

The Fuzzy-based Domain-driven Data Preprocessor (FDDP)
uses fuzzy logic to manage uncertainty in agricultural data
such as rainfall, temperature, pesticide use, and crop yield.
It converts continuous values into categories for easier
interpretation, handles missing or noisy records with
membership functions, and applies imputation techniques
to keep datasets accurate and complete. Key yield prediction
factors and their units are listed in Table 2.

These input parameters are treated as a Set in FDDP
module, represented as 7, ={p,,ﬂ,pz,0--.pu,ﬂ} where .0, - are
the input parameters at timestamp £, given in the same
sequence as in Table 2.

Knowledgebase

] | I Database I l | IRuIe basel |
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Figure 1: Fuzzy Logic

Defuzzification
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Fuzzification
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Table 1: Existing methods Key points

Author Work

Methodology

Advantages Limitations

De Rosal Ignatius Quantum

Hybrid Quantum Deep Learning

Moses Setiad

etal., Model (HQDLM) XGBoost
Deep Learning for Multi-

JianLuetal. Source Data-Driven Crop Yield

Prediction (DLMSDD)

Deep Learning Framework for

Haydar Demirhan  Crop Yield Prediction in Australia

(DLFCQ) (DNN),
Mahmoud Hybrid Feature Selection Hybrid feature
Abdel-Salam Approach and Optimized selection, K-means
etal. Machine Learning (HFSAOML) clustering,

computing, Bi-LSTM,

CNN, LSTM, Attention
mechanism, kNDVI,

Deep neural network

High predictive accuracy
for rice yield, Enhanced
feature extraction

Relies on quantum
simulators, Requires high
computational resources, .

Superior accuracy in crop
yield prediction,
Enhances feature
extraction

Heavily relies on high-quality
multi-source data,
Computational complexity

Outperforms benchmark
models,

High flexibility in handling
low-frequency data,

Short observation period and
limited availability of climate
change proxies

Limited applicability to other
agricultural contexts or crop
types.

Hybrid feature selection
improves model efficiency,
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Table 2: Input parameters’ details

S.No  Parameter Context Unit

1 Rainfall Climatic mm

2 Temperature Climatic °C

3 Humidity Climatic %

4 Solar Radiation Climatic W/m?
5 Wind Speed Climatic km/h
6 Soil pH Soil H*

7 Soil Moisture Soil %

8 Organic Matter Soil %

9 Pesticide Use Agronomic kg/ha
10 Fertilizer Use Agronomic kg/ha
11 Land Surface Temperature Environmental  °C

12 Evapotranspiration Environmental mm/day

Interpolation based Missing Value Estimator (IMVE), Fuzzy
Anomaly Detector (FAD) and Fuzzy Data Classifier (FDC)
are the three fundamental components used to build the
FDDP Module.

Interpolation based Missing Value Estimator

The Interpolation-based Missing Value Estimator (IMVE) fills
data gaps by using interpolation to predict missing values
from existing patterns. This keeps datasets consistent,
reduces bias from random imputation, and preserves
quality for reliable analysis, especially when gaps are small
and trends are predictable.Since the input parameters
are measured periodically in different timestamps, the
parameters sets are portioned out for different timestamps
lihyty... such as B,P.F ... Then for any missing x*"
parameter value £, at ™ timestamp can be calculated
using equation 1.

(ty=ty-1)(ty=ty-3)(ty=ty-4)
(ty=2=ty=1)(ty-2=ty-3)(ty-1-t-s)
(ty=ty=1)(ty=ty=2)(ty~ty-a) x
(ty-s=ty-1)(ty-a=ty—2)(ty-s=t-3) pxt}’“

Pr = (ty=ty=2)(ty=ty-3)(ty=ty-s)
Tty (ty-1=ty—2)(ty-1-ty-a)(ty-1~t-s)
(ty=ty=1)(ty=ty=2)(ty=ty-s)

X +
(ty-3=ty-1)(ty-3—ty—2)(ty-1=t-a) pxty_3

X pXty_l + X p,cty_Z +

Equation (1)

IMVE works by assigning higher weights to nearby
known data points and lower weights to distant ones,
ensuring smooth transitions through missing values. This
weighted interpolation preserves natural trends, maintains
consistency, and provides reliable estimates for use in
agriculture, environmental monitoring, and predictive
modeling.

Fuzzy Anomaly Detector

The Fuzzy Anomaly Detector (FAD) uses fuzzy logic to spot
outliers in uncertain or noisy agricultural data. Instead of
strict thresholds, it applies graded membership functions,
making detection more flexible and reducing false positives.

This helps identify errors or abnormal events in large,
variable datasets with greater reliability.

Algorithm 1: FAD

Input: £,,P,,B, ...F,

Output: Input parameter anomalies

Step 1: Load input data Sets B,,F,,F, ... B,

Step 2: Vi=1—>12:=

Step 3: Let p™ and o be the minimum and maximum
values of any parameter p,

Stepd:ivi=1-(n-1) =

Step 5: Compute A = ‘pi - P,
1j i+l

‘ Aif A< p™
Step6: p"" = ) '
t4 p," otherwise

Aif A> p™
Step7: ;" =

P otherwise

Ty

Step 8:end Vj

Step 9: end Vi

Step 10: Let £, be the new input data with members

{,01%l spzw "‘pIZ,M }
Step1l: yj=1 =12 =

FALSEifp"’"”’ <p Sp:mx

TRUE otherwise

Step 12: 4nomaly :{

Step 13:end Vi
Step 14: return

The Fuzzy Anomaly Detector module identifies
anomalies by applying above algorithm 1, which utilizes
fuzzy logic for flexible and precise detection. By handling
uncertainty and imprecise data, it effectively differentiates
normal patterns from outliers. This ensures accurate
anomaly detection in large, noisy datasets across various
domains.

Fuzzy Data Classifier

The Fuzzy Data Classifier (FDC) assigns data to overlapping
categories using fuzzy logic, allowing partial membership
instead of rigid boundaries. This flexible approach is well-
suited for ambiguous agricultural datasets, providing more
nuanced classifications and supporting better decision-
making where traditional methods fall short. Let Pxn:rm
be the normalized value of an input parameter p, at yt

timestamp which is calculated using equation 2.

min
norm _ (px‘.\ pX‘J )

X,
1y

i Equation (2)

px,L - lo;qJ

Then the input parameters values are classified by equation
3 as follows
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Lowif p;™ <%
Clax.viﬁcation‘l’(p ) = M 1 < prom 2
! ", = oderateif 35 P < 3

Equation (3)

Highotherwise

In this module, fuzzy logic classifies environmental variables
into categories such as “Low,” “Moderate,” or “High,” making
data more interpretable. This ensures the dataset is clean,
consistent, and reliable for further analysis.

Monte Carlo Simulation for Environmental Variables
Monte Carlo Simulation for Environmental Variables (MCSEV)
models uncertainty by simulating different scenarios
for rainfall, temperature, humidity, and solar radiation,
producing a range of outcomes that make yield forecasts
more resilient to real-world variability.For every normal input
parameter Set £, , the Monte Carlo simulated variable set p*
is computed using the following algorithm.

Algorithm 2: Monte Carlo Simulated Variable
Calculation

Input: P.P_.P .. .P

n 14

Output: R:,P,E,P,:,Pt:

1 2 3

Step 1:Load input data 7, =7,

Step 2: Let I' be the set of mean and standard deviation
2-tuple set as {(,.9, ) (4,7, )}

Step3:vi =1~ 12 := Compute 4, and 0, € r
Step4.Fori=1—n

Step 5: Set Distribution N(T')

Step 6: Compute Pf =¢'" as Log-normal

Step 7: End for 1

Step 8: return

The normal input parameters sets £ ...F,, along with
their individual members classifications, and the Monte
Carlo simulated parameters sets p*.._p=will serve as the
foundational data for the LSTM-based Yield Prediction
modaule.

LSTM based Yield Prediction (LYP)

The LYP module uses outputs from FDDP and MCSEV—
combining deterministic and probabilistic data—to
enhance yield prediction accuracy. It applies LSTM’s core
components, with equations for the Forget Gate, Input Gate,
Candidate Cell State, Cell State Update, Output Gate, and
Hidden State Update, ensuring robust temporal modeling.
LYP Forget Gate equation:

fo = o(wy - [heer, VA = 1 = nii= (P, ||1PE)QW(Py,)] + by) Equation (4)

where f, is the activation function of forget gate, w, is the
forget gate weight, b, is the bias value, ® refers a dedicated
impact operator

LYP Input Gate equation:

i = 0 (Wi [hey, VA = 1= ni= (P, IIPE )@ (Py,)] + be) Equation (5)

Where it is the Input gate activation function, w, and bt
are the weight and bias of input gate

LYP Candidate Cell State equation:

Ce = tanh(w, - [he—y, YA =1 > nii= (PtlllPé)®'1’(Pq)] +bc) Equation (6)
where ¢, is the cell state activation function, w, and b, are

the weight and bias of candidate cell state function
LYP Cell State Update equation:

Ct = ft QCH +it 0) C‘t Equation (7)
where ¢, refers the updated cell state

LYP Output Gate equation:

or = (W, - [he—y, VA = 1 > nii= (P ||PE)®% (P, )] + b,)  Equation (8)

Where o, is the Input gate activation function, w, and bo
are the weight and bias of output gate
LYP Hidden State Update equation:

h, =0, ©tanh(C,)

where £, is the final output of LYP-LSTM cell

The LYP module processes both normal input parameters
and Monte Carlo simulated variables to enhance yield
prediction accuracy. By integrating uncertainty-aware
simulations, the LYP module dynamically updates its
memory state, allowing it to learn complex patterns in
agricultural data. The combination of deterministic and
probabilistic inputs ensures that the model accounts for
variations in environmental conditions, making predictions
more robust. The LYP module leverages these diverse inputs
to refine its internal representations and improve decision-
making. An illustration of proposed LYP Architecture is
provided in Figure 2.

This approach significantly enhances the reliability of
yield forecasts by incorporating real-world uncertainties.
Ultimately, the LYP module provides a more adaptive and
data-driven framework for agricultural yield prediction.

Equation (9)

Experimental Setup

The experimental setup for the LSPYP-ML framework
was implemented on a system with an Intel Core i7 (3.8
GHz) processor, 16GB RAM, and a 1TB NVMe M.2 SSD.
Development was conducted in Visual Studio IDE [19] using
C++ 23.0 [20] with Microsoft Foundation Classes (MFC)
[21] for the dedicated Ul and Advanced C 24.0 Library for
optimized computations, efficient memory management
and parallel processing capabilities to handle large-scale
agricultural datasets seamlessly.. The FDDP module utilized
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Figure 2: LYP LSTM Architecture

fuzzy logic to classify environmental variables (rainfall,
temperature, pesticide usage) and handle missing or noisy
data. MCSEV employed probabilistic modeling to generate
synthetic datasets, simulating extreme weather scenarios.

The LYP module leveraged LSTM networks to capture
temporal dependencies in climate and yield data, enhancing
location-specific forecasting. The Ul is designed in a way to
prepare working folders, load dataset, extract dataset, load
different methodologies one-by-one in sequence, log the
benchmark parameters at different timestamps during the
execution, generate report and graphs.

Results and Analysis

The LSPYP-ML framework consistently outperformed
existing methods (HQDLM, DLMSDD, DLFCC, HFSAOML)
across all evaluation metrics—Accuracy, Precision,
Sensitivity, Specificity, and F-Score. It achieved an average
accuracy of about 97.07%, precision of 96.04%, sensitivity
of 98.19%, specificity of 96.22%, and F-Score of 97.14%,
ranking first in every category. Performance fluctuations
across timestamps were minimal, demonstrating stability
and robustness. These results confirm that integrating
fuzzy preprocessing, Monte Carlo simulations, and LSTM

Table 3: Accuracy

Accuracy (%)

Timestamp HQDLM DLMSDD DLFCC HFSAOML LSPYPML

1 95.30437 80.31421 81.29726 77.521339 97.335625
2 95.15336 80.13043 80.85357 77.2724 97.410736
3 95.15365 79.83714 81.40273 77.92601 97.175606
4 95.6113 80.30492 81.34583 77.854393 96.872795
5 94.9491 80.23478 81.21953 77.626511 97.033646
6 95.13113 80.1753 81.17243 77.527046 97.09581
7 95.03204 80.41753 81.57651 77.401398 96.826363
8 94.93655 80.27249 81.70128 77.409554 97.253227
9 95.2278 80.0099 81.09645 77.571686 96.923164
10 95.53943 80.53426 81.02496 77.631439 96.752747

Table 4: Precision

Precision (%)

Timestamp HQDLM DLMSDD DLFCC HFSAOML LSPYPML

1 94.63306 82.44935 79.47427 77.901299 96.028694
2 94.47423 82.23538 79.02873 77.853188 96.423721
3 94.28311 81.78342 79.59053 78.144264 96.274254
4 94.62369 82.62614 79.77153 78.632759 95.695915
5 93.72188 82.22311 79.17042 77.886955 95.659805
6 94.56387 824773 78.72392 78.116646 95.890755
7 93.93199 82.37688 79.59149 77.586342 96.126762
8 93.8521 82.08076 79.57638 78.248611 96.198143
9 93.93322 82.2313 79.35983 77.903648 96.086571
10 94.75791 82.55996 78.51454 78.08007 95.758224
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Table 5: Sensitivity

Sensitivity (%)

Timestamp HQDLM DLMSDD DLFCC HFSAOML LSPYPML

1 95.92091 79.07272 82.48154 77313774 98.606125
2 95.7751 78.91322 82.02229 76.959244 98.365494
3 95.95374 78.71924 82.58369 77.804642 98.041656
4 96.53037 78.96044 82.36486 77427429 98.002663
5 96.08012 79.07843 82.55366 77483353 98.362495
6 95.64902 78.84718 82.77757 77.206238 98.258911
7 96.04507 79.27051 82.88194 77.300423 97.490852
8 95.93278 79.21589 83.10832 76.957176 98.271835
9 96.42995 78.73333 82.21538 77.389839 97.721634
10 96.26254 79.34537 82.66502 77.385712 97.701553

Table 6: Specificity

Specificity (%)
Timestamp HQDLM DLMSDD DLFCC HFSAOML LSPYPML
1 94.70417 81.66646 80.19631 77.732079 96.129852
2 94.54828 81.45464 79.76716 77.592918 96.49295
3 94.38094 81.04561 80.30438 78.048447 96.340225
4 94.72783 81.7803 80.389 78.294868 95.794891
5 93.87228 81.48691 79.99046 77771172 95.775871
6 94.62486 81.63162 79.71717 77.855522 95.987465
7 94.06262 81.65811 80.37078 77.503136 96.180206
8 93.98261 81.40839 80.40896 77.877365 96.276711
9 94.08633 81.40517 80.05265 77.755966 96.15097
10 94.83859 81.82356 79.54172 77.881607 95.84095
Table 7: F-Score
F-Score (%)
Timestamp HQDLM DLMSDD DLFCC HFSAOML LSPYPML
1 95.27264 80.72575 80.94998 77.60643 97.300354
2 95.12022 80.54005 80.49769 77.403641 97.384926
3 95.11109 80.22208 81.05949 77.974091 97.149918
4 95.56753 80.75171 81.04746 78.025444 96.835556
5 94.88635 80.62012 80.82665 77.684624 96.992325
6 95.10335 80.6214 80.69988 77.658775 97.060394
7 94.97678 80.79384 81.20339 77.443123 96.804008
8 94.88104 80.62289 81.304 77.597519 97.22393
9 95.1652 80.44431 80.76237 77.645889 96.897209
10 95.5043 80.92075 80.53634 77.731339 96.720131

significantly improves yield prediction reliability under Conclusion
uncertain and variable. The measured results during the This study introduced the LSPYP-ML framework, which
evaluation are provided in the following tables. combines fuzzy preprocessing (FDDP), Monte Carlo
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simulations (MCSEV), and LSTM forecasting (LYP) to improve
paddyyield prediction. By addressing uncertainty, simulating
environmental variability, and capturing temporal patterns,
the model achieved superior performance across all
evaluation metrics, proving robust and reliable for location-
specific forecasting. The system supports real-time decision-
making, offering farmers and policymakers actionable
insights to boost productivity and manage climate risks.
Future work may extend the framework by incorporating
additional environmental factors, optimizing deep learning
architectures, and integrating satellite or loT-based data for
broader agricultural applications.

Code Availability
Code and datasets are provided online and the links will be
provided through E-Mail requests to the authors
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