Location Specific Paddy Yield Prediction using Monte Carlo Simulation incorporated Long Short-Term Memory
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.10.10Keywords:
Paddy yield prediction, Fuzzy logic, Monte Carlo simulation, LSTM, Agricultural forecastingDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Accurately predicting paddy yield is vital for food security and efficient farm management. This work proposes LSPYP-ML, a framework that combines fuzzy logic, Monte Carlo simulation, and Long Short-Term Memory (LSTM) networks to improve prediction accuracy. The fuzzy module cleans and classifies uncertain data such as rainfall, temperature, and pesticide use. The Monte Carlo module simulates extreme weather scenarios to account for environmental variability. Finally, the LSTM module captures temporal patterns in climate and yield data for robust forecasting. Experiments show that the framework achieves higher accuracy, precision, sensitivity, specificity, and F-Score compared to existing methods. LSPYP-ML offers a reliable decision-support tool for farmers and policymakers to enhance productivity and manage climate risks.Abstract
How to Cite
Downloads
Similar Articles
- R. Thiagarajan, S. Prakash Kumar, Performance of public transport appraisal using machine learning , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. P. Singh, R. Chandra, Bikrmaditya ., Effect of Nipping on Growth and Yield of Chickpea (Cicer Aritinum L.) Under Dryland Condition , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- U.S.P. Sinha, R. Chakravorty, STUDIES ON THE PHOSPHATIC AND POTASSIC FERTILIZERS REQUIREMENT OF MULBERRY (Morus alba L.) BASED ON SOIL TEST VALUES , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Rita Ganguly, Dharmpal Singh, Rajesh Bose, The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- ATANU BHATTACHARYYA, P. S. DATTA, ASIM BHAUMIK, SHASHIDHAR VIRAKTAMATH, MORSHED U. CHOWDHURY, RAJENDRA KUMAR ISAAC, TINY DEVICES- NANO - THE EMERGING WORLD TECHNOLOGY , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Bratati Dey, Poonam Sharma, A comprehensive review of urban growth studies and predictions using the Sleuth model , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Kinjal K. Patel, Kiran Amin, Predictive modeling of dropout in MOOCs using machine learning techniques , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P Janavarthini, I Antonitte Vinoline, Sustainable fuzzy inventory for concurrent fabrication and material depletion modeling with random substandard items , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- P. J. Robinson, S. W. A. Prakash, Stochastic artificial neural network for magdm problem solving in intuitionistic fuzzy environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.

