DAJO: A Robust Machine Learning–Based Framework for Preprocessing and Denoising Fetal ECG Signals
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.9.17Keywords:
Preprocessing, Denoising, Filtering Methods, Segmentation, Feature Extraction, Fetal ECGDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Accurate Fetal Heart Rate (FHR) detection and fetal electrocardiogram (fECG) analysis are vital for early identification of fetal distress. However, clinical fECG signals are often degraded by maternal ECG, baseline drift, powerline interference, and uterine contractions, reducing diagnostic reliability. To address this, the study presents a DAJO, a preprocessing framework that combines Denoising, Adaptive filtering, Joint FHR detection, and Optimized feature extraction. The workflow employs ensemble filters for noise suppression, adaptive filtering to enhance fetal-specific components, and a modified Hamilton–Tompkin’s method for robust FHR estimation. CNN-based feature extraction further ensures compact yet discriminative signal representation. Experimental results demonstrate that DAJO achieves 97% accuracy, 95% precision, 92% recall, 98% specificity, and a 95% F1 score, confirming its effectiveness. This highlights the DAJO as a robust preprocessing solution that preserves physiological integrity while improving automated FHR detection.Abstract
How to Cite
Downloads
Similar Articles
- S Selvakumari, M Durairaj, Performance Analysis of Deep Learning Optimizers for Arrhythmia Classification using PTB-XL ECG Dataset: Emphasis on Adam Optimizer , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Hardik Talsania, Kirit Modi, Attention-Enhanced Multi-Modal Machine Learning for Cardiovascular Disease Diagnosis , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Archana G, Vijayalakshmi V, Improving classification precision for medical decision systems through big data analytics application , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Nithya R, Kokilavani T, Joseph Charles P, Multi-objective nature inspired hybrid optimization algorithm to improve prediction accuracy on imbalance medical datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Amit Maru, Dhaval Vyas, Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- S. TAMIL FATHIMA, K. FATHIMA BIBI, Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, Swarm intelligence-driven HC2NN model for optimized COVID-19 detection using lung imaging , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Rajeshwari D, C. Victoria Priscilla, An optimized real-time human detected keyframe extraction algorithm (HDKFE) based on faster R-CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

