DAJO: A Robust Machine Learning–Based Framework for Preprocessing and Denoising Fetal ECG Signals
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.9.17Keywords:
Preprocessing, Denoising, Filtering Methods, Segmentation, Feature Extraction, Fetal ECGDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Accurate Fetal Heart Rate (FHR) detection and fetal electrocardiogram (fECG) analysis are vital for early identification of fetal distress. However, clinical fECG signals are often degraded by maternal ECG, baseline drift, powerline interference, and uterine contractions, reducing diagnostic reliability. To address this, the study presents a DAJO, a preprocessing framework that combines Denoising, Adaptive filtering, Joint FHR detection, and Optimized feature extraction. The workflow employs ensemble filters for noise suppression, adaptive filtering to enhance fetal-specific components, and a modified Hamilton–Tompkin’s method for robust FHR estimation. CNN-based feature extraction further ensures compact yet discriminative signal representation. Experimental results demonstrate that DAJO achieves 97% accuracy, 95% precision, 92% recall, 98% specificity, and a 95% F1 score, confirming its effectiveness. This highlights the DAJO as a robust preprocessing solution that preserves physiological integrity while improving automated FHR detection.Abstract
How to Cite
Downloads
Similar Articles
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Merla Agnes Mary, Britto Ramesh Kumar, Hybrid GAN with KNN - SMOTE Approach for Class-Imbalance in Non-Invasive Fetal ECG Monitoring , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Dimpal Khambhati, Chirag Patel, Analyzing cardiac physiology: ECG ensemble averaging and morphological features under treadmill-induced stress in LabVIEW , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, Feature selection in HR analytics: A hybrid optimization approach with PSO and GSO , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, A COVID Net-predictor: A multi-head CNN and LSTM-based deep learning framework for COVID-19 diagnosis , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- J. Fathima Fouzia, M. Mohamed Surputheen, M. Rajakumar, A Unified Consistency-Calibrated Boundary-Aware Framework for Generalizable Skin Cancer Detection , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- C. Premila Rosy, Clustering of cancer text documents in the medical field using machine learning heuristics , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- A. Sahaya Mercy, Dr. G. Arockia Sahaya Sheela, Speckle-Robust Local Phase and Ternary Texture Encoding (SLaP-TEX) based Feature Extraction for Liver Steatosis Classification in Ultrasound Imaging , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Chaotic-based optimization, based feature selection with shallow neural network technique for effective identification of intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

