Hybrid GAN with KNN - SMOTE Approach for Class-Imbalance in Non-Invasive Fetal ECG Monitoring
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.9.11Keywords:
Fetal Heart Rate, Data Augmentation, TGAN, WGAN, CGAN and KNN-SMOTE (oversampling), LSTM - CNN.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Imbalanced fetal electrocardiogram (fECG) datasets often hinder reliable fetal health assessment by biasing predictions toward majority classes. This article presents a two-stage augmentation framework that integrates three generative models: conditional GAN (cGAN), time-series GAN (TGAN), and Wasserstein GAN (WGAN) with a K-nearest neighbor (KNN) - based Adaptive Synthetic Minority Over-Sampling Technique (SMOTE) algorithm to generate physiologically realistic minority-class signals. Preprocessing steps included the removal of missing records and normalization to ensure data consistency. The balanced dataset was used to train a hybrid LSTM–CNN classifier designed to capture both long-term temporal dynamics and localized time–frequency features of fECG signals. The proposed method improved overall classification accuracy by 4–7% and minority-class F1-scores by up to 10% compared to baseline approaches. The framework achieved 97% accuracy and 98% F1-score by combining ensemble GAN-based augmentation with adaptive oversampling for robust and balanced biomedical time-series analysis.Abstract
How to Cite
Downloads
Similar Articles
- Annalakshmi D, C. Jayanthi, A secured routing algorithm for cluster-based networks, integrating trust-aware authentication mechanisms for energy-efficient and efficient data delivery , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Merlin Sofia S, D. Ravindran, G. Arockia Sahaya Sheela, Clean Balance-Ensemble CHD: A Balanced Ensemble Learning Framework for Accurate Coronary Heart Disease Prediction , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- S Selvakumari, M Durairaj, Performance Analysis of Deep Learning Optimizers for Arrhythmia Classification using PTB-XL ECG Dataset: Emphasis on Adam Optimizer , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Monalisha Paul, Chaitali Kundu, Rudranil Bhowmik, Sanmoy Karmakar, Sandip K. Sinha, Nilanjana Chatterjee, The potential impression of fructo-oligosaccharides and zinc oxide nano composite against nicotine influenced cardiovascular changes , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- N. Ruba, A. S. A. Khadir, Session password Blum–Goldwasser cryptography based user three layer authentication for secured financial transaction , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Priya Nandhagopal, Jayasimman Lawrence, ECE cipher: Enhanced convergent encryption for securing and deduplicating public cloud data , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Chandrasekaran M, Rajesh P K, Optimization of cost to customer of power train in commercial vehicle using knapsack dynamic programming influenced by vehicle IoT data , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

