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Abstract

Imbalanced fetal electrocardiogram (fECG) datasets often hinder reliable fetal health assessment by biasing predictions toward majority
classes. This article presents a two-stage augmentation framework that integrates three generative models: conditional GAN (cGAN), time-
series GAN (TGAN), and Wasserstein GAN (WGAN) with a K-nearest neighbor (KNN) - based Adaptive Synthetic Minority Over-Sampling
Technique (SMOTE) algorithm to generate physiologically realistic minority-class signals. Preprocessing steps included the removal of
missing records and normalization to ensure data consistency. The balanced dataset was used to train a hybrid LSTM-CNN classifier
designed to capture both long-term temporal dynamics and localized time-frequency features of fECG signals. The proposed method
improved overall classification accuracy by 4-7% and minority-class F1-scores by up to 10% compared to baseline approaches. The
framework achieved 97% accuracy and 98% F1-score by combining ensemble GAN-based augmentation with adaptive oversampling

for robust and balanced biomedical time-series analysis.

Keywords: Fetal Heart Rate, Data Augmentation, TGAN, WGAN, CGAN and KNN-SMOTE (oversampling), LSTM - CNN.
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Introduction

Fetal monitoring has advanced significantly over recent
decades, driven by technological innovations and evolving
clinical practices aimed at enhancing maternal and fetal
safety during labour (Kuzu & Santur, 2022). The use of
continuous Electronic Fetal Monitoring (EFM), also known
as cardiotocography, provides real-time recordings of
fetal heart rate and uterine contractions, allowing early
detection of fetal distress to prevent hypoxia (Heelan L,
2013). Monitoring fetal health during pregnancy and labor
is crucial for avoiding complications such as birth asphyxia,
neurological damage, or perinatal death. Cardiotocography

Department of Computer Science, St. Joseph's College
(Autonomous),  Affiliated to  Bharathidasan  University,
Tiruchirappalli, Tamil Nadu, India.

*Corresponding Author: Merla Agnes Mary, Department of
Computer Science, St. Joseph's College (Autonomous), Affiliated to
Bharathidasan University, Tiruchirappalli, Tamil Nadu, India. E-Mail:
merlaraj10@gmail.com

How to cite this article: Mary, M.A., Kumar, B.R. (2025). Hybrid
GAN with KNN - SMOTE Approach for Class-Imbalance in Non-
InvasiveFetal ECGMonitoring.TheScientificTemper,16(9):4791-4799.
Doi: 10.58414/SCIENTIFICTEMPER.2025.16.9.11

Source of support: Nil

Conflict of interest: None.

© The Scientific Temper. 2025
Received: 12/09/2025

Accepted: 21/09/2025

#HE1E8 - TGAN - WGAN - CGANFIKNN-SMOTE (3 K#4¥ ) -+ LSTM - CNN.

(CTG) is a non-invasive system that records Fetal Heart
Rate (FHR) and Uterine Contraction (UC) (FIGO 2015). FHR
indicates fetal and central nervous system responses to
blood pressure, blood inundation, and acid- bridgehead
situation. In clinical practice, FHR analysis helps determine
fetal tribulation, placental abruption, and chorioamnionitis
(Rao, Lin, Jia Lu, Hai-Rong Wu, Shu Zhao, Bang-Chun Lu, and
Hong Li, 2024).

Figures 1 and 2 Represent The Real-Time Monitoring Of
The Maternal Woman.

CTG interpretation is often subjective and varies with
clinician experience, leading to inconsistent diagnoses and
delayed interventions. To address this, automated diagnostic
systems using ML and DL models have been developed for
real-time fetal monitoring (Sundararajan, D. Wang, and R.
Min, 2020) (Zhong W, Luo J, Du W, 2023). These methods,
along with GANs, help extract fetal signals despite maternal
ECG and noise interference. A major challenge remains
dataset imbalance, as public databases like CTU-UHB
contain more normal than pathological cases, limiting model
generalization (Kahankova, Radana Vilimkova, Dominik
Vilimek, Seyedali Mirjalili, Vaclav Snasel, Jeng-Shyang Pan,
Jitka Horakova, and Radek Martinek, 2024).

FHR traces (Figure 3) show variable decelerations, which
are sudden drops in heart rate typically linked to umbilical
cord compression during contractions.
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Figure 3: Cardiotocography (CTG) showing variable decelerations.

Researchers have increasingly used Generative Adversarial
Networks (GANs) to tackle dataset imbalance in fetal ECG
studies, where they generate realistic synthetic signals to
support model training (M. Mirza and S. Osindero, 2014).
Variants such as Conditional GANs (CGANs), Time-series
GANSs (TGANSs), and Wasserstein GANs (WGANSs) enable
class-specific synthesis, capture temporal patterns, and
enhance training stability. Previous works include CT-GANs
for CTG feature enhancement and FHRGAN for fetal heart
rate signal generation, though they are limited by single-
architecture use (R. S. Jayanthi and K. Bhavani, 2023), (A.
Venkata Sriram, N. M. Mohamed Aslam, and G. Premkumar,

2024). Traditional methods like SMOTE (Synthetic Minority
Oversampling Technique) can augment minority classes
but often produce low-variability or redundant samples,
reducing their effectiveness for physiological data (N. V.
Chawla, K. W.Bowyer, L. O. Hall,and W. P. Kegelmeyer, 2002).
To address these issues, a hybrid framework combining
CGAN, TGAN, and WGAN with KNN-based adaptive SMOTE
has been proposed, allowing for robust augmentation
of minority classes and the generation of physiologically
plausible synthetic FECG signals.

The remainder of this paper is organized as follows.
Section 2 presents a comprehensive review of recent
literature on data imbalance handling techniques. Section
3 details the proposed augmentation framework. Section
4 describes the experimental design and reports the
evaluation results. Finally, Section 5 summarizes the key
findings and discusses potential directions for future
research.

Literature Review

Despite advancements in prenatal care, fetal mortality
remains a critical global challenge, underscoring the need
for improved methods of early detection and prevention.
Recently, more attention has been given to the early
identification of fetal issues using decision support tools,
such as machine learning. For these tools to work effectively,
they need balanced datasets to ensure accurate predictions
and proper evaluation of parameters such as fetal heart rate
and uterine contractions.

Generative Adversarial Networks (GANs) have emerged
as powerful tools in healthcare, helping to overcome
challenges related to limited data, privacy concerns, and
classimbalance (C. Esteban, S. Hyland, and G. Rétsch, 2017).
GAN-based approaches have been employed to augment
Cardiotocography (CTG) datasets, enabling the creation
of physiologically realistic fetal heart rate and uterine
contraction signals, thereby improving the accuracy and
generalizability of machine learning models (D. Sujatha and
A. Kalpana, 2021).

Akpinar MH, Sengur A, Salvi M, Seoni S, Faust O, Mir H,
Molinari F, Acharya UR, (2024) reviewed the application of
GANs in healthcare signal processing, specifically targeting
fetal ECG and cardiotocography (CTG), which are commonly
used in prenatal monitoring. The study highlighted the
increasing adoption of conditional GANs (cGANs) and
CycleGANs for time-series data generation, emphasizing
their effectiveness in producing realistic and balanced
datasets.

Jeong JJ, Tariq A, Adejumo T, Trivedi H, Gichoya JW,
Banerjee |, (2022) focused on the role of GANs in medical
imaging, with particular emphasis on fetal ultrasound
analysis. The research demonstrated that GANs effectively
augment ultrasound datasets, enhancing the training
of deep learning models used for segmentation and
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Table 1: Comparison Summary of Related Studies
Authors Method Used Addresses Class Imbalance  Limitations

CONDITIONAL GANS, CYCLEGAN FOR

Lacks experimental results; focuses on

Akpinaretal.(2024) 1 \\e GERIFS GENERATION ves review rather than implementation
GANS FOR IMAGE AUGMENTATION . Imaging-focused; doesn't apply to signal
Jeongetal. (2022) AND SEGMENTATION Partially data or class balancing directly
. GAN-BASED SIGNAL SYNTHESIS FOR Mostly conceptual; lacks implementation
Amiri et al. (2023) WEARABLE MONITORING ves depth
ENSEMBLE GANS FOR SYNTHETIC DATA Not tailored to fetal data; general medical
Zhu etal. (2025) GENERATION ves application
Yu et al. (2024) CTGGAN (CONDITIONAL GAN FOR FHR Yes Tested.on one d.ataset; lacks real-time/noisy
SIGNALS) scenario validation
FHR-GAN (CCWGAN-GP FOR REALISTIC No hybrid approach; evaluated on a single
Zhangetal.(2022) - p\p CENERATION) ves dataset
HYBRID (GAN + SMOTE + ENSEMBLE High complexity; heavy computation;
Mohan etal.(2023)  LEARNING WITH 1D-RESNET, Yes fegture enp Y ] P '
XGBOOST) 9 9
Dewietal.(2022)  TIME-SERIES GAN (TSGAN) Yes Lacks detailed analysis of GAN limitations
like mode collapse
- COMPARISON OF GAN, SMOTE, AND Inconsistent baselines across techniques;
Ozsevenetal. (2024) g ves limited to MIT-BIH ECG
Alba etal. (2022) FEATURE SELECTION + Yes Warns against oversampling before split; no

UNDERSAMPLING + SMOTE (NO GAN)

GAN used

classification of the GANs in improving fetal imaging and
prenatal diagnostics.

Amiri, Z., Heidari, A., Navimipour, N.J. (2024) reviewed
deep learning in biomedical informatics, noting the use
of GANs for synthesizing fetal signals from wearable and
remote monitoring devices. Their findings emphasized
GANs’ potential to enhance data availability, diagnostic
accuracy, and real-time monitoring and decision-making
in fetal health care.

Tronchin, Lorenzo, Tommy Lofstedt, Paolo Soda, and

Valerio Guarrasi (2025) investigated the use of ensemble
GANSs across a range of medical datasets, including both
signal and image modalities. The combination of multiple
GAN models was found to produce richer and more diverse
synthetic data, contributing to greater robustness in
diagnostic training. Ensemble GANs were shown to enhance
the generalizability and reliability of working with limited
or highly variable datasets.
Chen, Lin, Shuicai Wu, and Zhuhuang Zhou (2025) proposed
Attention R2W-Net, a deep learning framework designed
to extract fetal ECG (FECG) from maternal abdominal ECG
signals. The model incorporated recurrent residual modules
and attention gates to accurately isolate fetal signals, evenin
the presence of noise. Performance across various datasets
surpassed that of earlier models, indicating strong potential
for non-invasive fetal cardiac monitoring.

Yu, Zichang, Yating Hu, Yu Lu, Leya Li, Huilin Ge, and
Xianghua Fu (2024) introduced CTGGAN, a conditional

GAN developed to generate realistic fetal heart rate (FHR)
signals using the CTU-UHB dataset. By conditioning on
class labels such as “normal” and “pathological,” CTGGAN
effectively produced minority-class samples. However, the
model was primarily tested on a single dataset and under
non-real-time conditions, limiting its applicability in more
complex scenarios.

Zhang, Yefei, Zhidong Zhao, Yanjun Deng, and Xiaohong
Zhang (2022) developed FHR-GAN, a specialized model
based on the Wasserstein GAN with gradient penalty
(CCWGAN-GP), to generate realistic FHR signals. The aim
was to address issues of data scarcity and class imbalance.
The model preserved essential signal morphology, aiding
in improved generalization for downstream tasks.

Mohan et al. (2023) presented a hybrid framework
that combined GAN-generated samples with ensemble
learning for the detection of fetal hypoxia. SMOTE was also
used to improve the representation of the minority class.
The pipeline integrated linear features, Discrete Wavelet
Transform (DWT), and 1D-ResNet for feature extraction, with
XGBoost serving as the ensemble classifier. Nevertheless,
the system introduced increased complexity and required
significant computational power along with careful feature
engineering.

Puspitasari, Riskyana Dewi Intan, M. Anwar Ma’sum,
Machmud R. Alhamidi, and Wisnu Jatmiko (2022)
implemented a Time-Series GAN (TSGAN) to synthesize fetal
heart rate (FHR) signals, aiming to mitigate class imbalance.
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Table 2 : Parameter in the dataset

Types of data Parameters

Age

Parity

. Gravidity

. type of delivery (vaginal; operative vaginal; CS)

. duration of delivery; meconium-stained fluid; type of
measurement

1. Sex

2. Birth weight

1. Analysis of umbilical artery blood sample (i.e. pH; pCO2; pO2;

base excess and computed BDecf)
2. Apgar score; neonatology evaluation (i.e. need for O2; seizures;
admission to NICU)

Maternal data

D= w o~

Delivery data

Fetal data

Fetal outcome data

While promising for fetal abnormality detection, the study
did not thoroughly investigate challenges like mode collapse
or the model’s ability to generalize to unseen data.
Ozseven, Turgut (2024), evaluated GANs, SMOTE, and
Variational Autoencoders (VAE) for data augmentation in
ECG signal classification. GAN-based augmentation resulted
in an approximate increase in classification accuracy, while
SMOTE achieved the best balance performance at 86.4%.
VAE outperformed other methods when trained solely on
synthetic data. However, comparisons across methods were
hindered by inconsistent baseline metrics.
Nieto-del-Amor, Félix, Gema Prats-Boluda, Javier Garcia-
Casado, Alba Diaz-Martinez, Vicente Jose Diago-Almela,
Rogelio Monfort-Ortiz, Dongmei Hao, and Yiyao Ye-Lin,
(2022) addressed class imbalance in preterm birth prediction
using electrohysterography (EHG) signals. Optimal results
were achieved by combining feature selection with
undersampling of the validation set. The study emphasized
the effectiveness of resampling strategies like SMOTE. The
authors cautioned against applying oversampling before
data splitting to avoid overfitting
The literature review highlights the importance of
resampling methods like SMOTE combined with Generative
Adversarial Networks (GANs) in addressing class imbalance
in datasets for prenatal health monitoring. Techniques such
as conditional GANs, CycleGANs, CTGGAN, and FHR-GAN
can generate realistic fetal heart rate (FHR) and fetal ECG
data. This improves the accuracy, recall, and precision of
diagnostic models. Additionally, studies that combine
GANSs with feature integration and ensemble learning have
achieved further improvements, especially in identifying
abnormal cases within minority classes.

Methodology

This section describes the dataset, methods, flow diagram,
and evaluation metrics used for the proposed techniques
(Ensemble of GANs and KNN-based adaptive SMOTE).

Dataset

The proposed method employs a validated dataset from the
Czech Technical University (CTU) in Prague and the University
Hospital in Brno (UHB), comprising 552 cardiotocography
(CTG) recordings. These recordings were carefully selected

Table 3: summarizes the accuracy and loss values at selected epochs

S.No.  Epochs  Balanced Accuracy (%)  Cross-entropy Loss
1 10 85.2 0.34
2 20 88.4 0.25
3 30 90.3 0.221
4 40 92.1 0.186
5 50 93.2 0.159
6 60 94.3 0.128
7 70 94.6 0.115
8 80 95.0 0.107
9 90 95.6 0.096
10 100 973 0.084

from a larger set of 9,164 collected between 2010 and 2012
at UHB. Each CTG recording begins no more than 90 minutes
before delivery and lasts up to 90 minutes, capturing the
critical final stages of labor (Goldberger, A., L. Amaral, L.
Glass, J. Hausdorff, P. C. lvanoy, R. Mark, J. E. Mietus, G. B.
Moody, C. K. Peng, and H. E. Stanley, 2000)

The dataset comprises two physiological signals: Fetal
Heart Rate (FHR) and Uterine Contraction (UC), both sampled
at a rate of 4 Hz. Figure 4 presents the FHR and Uterine
Contraction signals for normal data. Table 2 presents the
parameters involved in the dataset that enhance the signal
quality. This high-resolution sampling enables detailed
analysis of fetal responses to labour activity.

Proposed Methodology

The proposed approach addresses the data imbalance of
the minority class to enhance fetal health prediction by
combining three GAN models—Wasserstein GAN (WGAN),
Conditional GAN (CGAN), and Time-series GAN (TGAN)
within an ensemble framework, producing synthetic FHR/UC
signals for underrepresented classes (Normal cases where
pH>=7.05, in suspicious the pH>=7.05 and pH<7.05 then in
Pathological cases pH<7.05). The generated data is further
improved using KNN-based Adaptive SMOTE, which helps
ensure that interpolated samples preserve physiologically
plausible continuity across high-dimensional features.
Figure 5 illustrates the flow of contributions to the data
imbalance for minority classes (pathological and suspicious).

Data Quality Assessment

A preliminary step is taken to identify and address missing
values, which helps prevent incomplete data from causing
bias or reducing the effectiveness of later learning models.
In the dataset, where represents the number of samples
and for the number of features, we perform a systematic
check for invalid or missing entries. The locations of these
missing values are identified as follows:
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Figure 4: FHR and Uterine Activity Signals

Detection Criteria
Avalue D;; is flagged as missing if it satisfies:

D;; € {NaN,None} Vv Dy = {(X; )} _," Q)

where X; is the multivariate time-series containing FHR and
UG signals, and ;.

Missing Value Handling

« If Y; (pH label) is missing, remove the instance:

D « D\{(X;y) | y; is missing} @

«  For missing signal points in X;:
- Ifgaplength g < g,,,, g fill via spline interpolation:

x(©) = ) aBy(0) 3)
j=0
where B;(t) are cubic B-spline basis functions.
- If 9> 9,,,, 9 remove the record. 4)

Classification of the dataset
«  The CTU-UHB Fetal CTG Dataset is partitioned into three
disjoint subsets (Normal, Suspicious and Pathological)
based on the target label ¥; (the pH value associated
with each CTG record).
Dnormar = {Xi / yi =2 715}
Dsuspicious = {X;/ 705 <y <715}

DPathalogical ={Xi/y: <705}

(5)

NormalCases
(oh>=718)

Suspicious Casos

CTU-UHB Dataset  —yf Che%:mf:sinﬂ "““?‘.’s’f“""‘ -

(imbalanced)

Pathological Cases
(ph<7.08)

KNN-Based Adaptive

Ensemble GAN Training
SMOTE for Signal-Level
Interpolation

TGAN - Learn Class-conditioned
i

dependenciesin FHR/UG/pH.
signals

Suspicious Cases
(Balanced Data)

Pathological Cases

i
R o Gaanceddere)

Figure 5: The block diagram of the Proposed Work

Preprocessing

Normalization scales data to a standard range or distribution,
improving learning and convergence. Zero padding adds
zeros to data to align shapes or preserve dimensions. Each

sequence is normalized:
~ Xi — Uy.
f=——
i o (6)
where and are the mean and standard deviation of

the sequence.Sequences are zero-padded or truncated to
length

Xpad — {[Xi,O,...,O] lf |Xl| <L
i X; [1:L] Otherwise
Ensemble GAN Training

This phase uses a hybrid ensemble that incorporates
TimeGAN, WGAN-GP, and CGAN to capture temporal

7)

Table 4: Comparison with existing work

Author Method used Dataset Performance
Accuracy = 93.6%
Zhang et. al (2021) CCWGAN-GP (FHRGAN) CTU-UHB F1-Score = 92.8%
Accuracy = 96.2%
Mohan et. al (2023) GAN + SMOTE + Ensemble (Xgboost, Resnet) CTU - UHB F1- Score = 96 %
. . . Accuracy = 91.6%
Lingping et. al (2025) Borderline-SMOTE CTU-UHB Flscore = 90%
. Accuracy =94.2 %
Qazi et. al (2025) GAN CTU - UHB F1Score =811 %
. Accuracy =97 %
Proposed Methodology Ensemble GAN + KNN-Based Adaptive SMOTE CTU - UHB

F1 Score =98 %
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dynamics and class-conditioned variation in pathological
and suspicious signals.

Conditional GAN (CGAN)

Class-conditional data distributions pdata (x |y) are learned
by CGAN by conditioning the discriminator and generator
on auxiliary data, including class labels or attributes.

i

G D Eonpy,,, [logD (x| )] + Eonp. [log (1= D(G (= | y) | y))] 8)

TGAN

TimeGAN variants retain both the statistical and temporal
features of the original signals. G uses a recurrent chain
to model sequence dynamics, and outputs =G( ).

ﬁ; = fR.-‘f.-\-‘ha—l.:,
X =G (hr) 9)
WGAN

WGAN minimizes the Wasserstein (Earth Mover’s) distance
between the generated and real distributions and produces
areal-valued score.

Lwean = Eznpgon [ D{x)| EE ~ pg|D{E}] (10)

The union of S, US; ;. YUSyen typically, train separate
generators and discriminators critics for each branch and
combine their outputs.

Scan = Scean U Srean U Swean  m)

Evaluate with Discriminator

Synthetic samples are scored using the discriminator A
higher threshold T means stricter quality control and fewer
synthetic samples will pass. A sample " is retained if:

D¢ (f:) > T 12)

KNN-Adaptive SMOTE

SMOTE (Synthetic Minority Oversampling Technique) creates
artificial minority class samples by interpolating between a
minority instance and one of its closest minority neighbors.
Let be a minority sample, and »,(x,) it's K-Nearest
Neighbors in the minority set. Find k-nearest neighbors:

|:NNk (xl.) - {xﬂ, 2> xi3""xik}]

Synthetic interpolation is:
Xnem == Xm + A (X'rm - Xm) (13)

where x,en, (x,) and A~ M(0,1). The adaptive version
modifies  based on local density:
3= 3 Pmaz — p(Xm}

Pmaz — Pmin

(14)

where p(Xx, ) is the density around

Final Balanced Dataset

The final dataset is:
Ditanced = Divormar U (Dsuspicions U Dsuspicions ) U (D pataotogicar U D pathatagicar) (1 5)

where  represents synthetic samples from GAN +
SMOTE.
Classifier Input

After GAN + KNN-Adaptive SMOTE augmentation, the
balanced dataset is used to train a hybrid LSTM-CNN
classifier:

« LSTM captures temporal dependencies:

he = o (Wihey + W, + b) (16)
After feature extraction from LSTM + CNN, the final hidden
representation (or a pooled CNN feature map) is fed
into a dense layer:

1)' = Relu “i’:{rh?" | hﬂ] (17)

Loss Function — Categorical Cross-Entropy c. The objective
is to minimize the classification loss:

o

-'l—’c'v!'-s - = Z ?)rt'lloq (?}t)
e=1

Where:
V. € {O, l} is the true one-hot label
" is the predicted probability for class
A balanced dataset is evaluated using a hybrid LSTM-
CNN classifier, where CNN layers extract local features and
LSTM modules capture temporal dependencies, yielding
robust classification of prenatal health conditions.

Algorithm 1: Pseudocode for Data Augmentation
Using Ensemble GANs with Adaptive KNN-SMOTE
Input: D: Original dataset

Handle Missing Value:

« If pH label ( is missing, remove the instance:
D« D\{(X,,y,) |y, is missing}

Classify the dataset

Assign fetal condition classes based on pH thresholds:
Normal , if pH>17.1

D,,. =1 Suspicious, if pH <7.15and pH > 7.05
Patholocial, if pH<7.05

Preprocess

- Normalize each sequence X”[r;;an']
« Zero-padded to the length L x> = x,,0,...0

Ensemble GAN-Based Augmentation

+ Train three GAN models on minority classes.
« CGAN: L,=-£[D(G(2))]
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+ TGAN: z ~p(z|x),x=G(z)
«  Sean = Scean U Steaw U Swean WGAN

:G(z|y)—->x_y
«  Combine Synthetic Data:
KNN-Based Adaptive SMOTE

« Merge original and generated samples:
D <D, YD,

orig

«  Find minority sample
Xi: [NNk (xl.) = {xil, X, xl.3,...xik}]
« Collect all SMOTE-generated samples:

[D _{smote}=x_{new}" {(J)H

«  Repeat until all classes are balanced:
| Dnorm| = | Dsusp | =~ | Dpath|

Final Dataset Construction
Combine all data: D,,, =l Dnorm!| U | Dsusp| U | Dpath!|

Train Classifier
+ Use D, to train the classifier with LSTM + CNN
he = (Wyhe_y + Woae + b)
« Also fed into the dense layer by the Relu activation
function: § = Relu (W,hr + b,)
Output: Balanced Dataset.
The proposed augmentation workflow is outlined in
Algorithm 1.
The approach systematically preprocesses the data,
generates physiologically realistic synthetic signals, and
ensures balanced class distributions before classifier training.

Experimental Results

The effectiveness of the proposed ensemble GAN with
Adaptive KNN-SMOTE was evaluated on the CTU-
UHB dataset. Experiments assessed the impact of the
augmentation strategy on class balance, signal diversity,and
classification accuracy. As illustrated in Figure 6, the dataset
exhibited a pronounced imbalance, with 81% Normal, 12%
Suspicious, and 7% Pathological cases, which can bias model
training toward the majority class.

After applying the proposed Ensemble GAN with
Adaptive KNN-SMOTE, the dataset achieved near-uniform
distribution, with 447 Normal, 430 Suspicious, and 410
Pathological samples (Figure 7). This balance reduced bias,
improved generalization, and enhanced the classifier’s
ability to detect minority cases accurately.

Figure 8illustrates representative synthetic fECG signals
generated by WGAN, cGAN, and TGAN, normalized for
visualization.

Classification Metrics

A hybrid LSTM-CNN classifier was trained on the augmented
dataset to evaluate the effectiveness of the proposed

Pathological

Suspecious
12%

Normal
81%

B Normal M Suspecious M Pathological

Figure 6: Distribution of Dataset CTU-UHB before Augmentation

450

447 430
410
400
350
300
250
200
150
100
50
0
1

mNormal M Suspecious M Pathological

Figure 7: Distribution of dataset after the Data Augmentation

Sample Synthetic Signals from GANs

— WGAN Synthetic Signal
—— CGAN Synthetic Signal
—— TGAN synthetic Signal

Range
o
7

0 500 1000 1500 2000 2500 3000

Samples

Figure 8: Synthetic signals generated by Ensemble GAN

t-SNE: Real vs Synthetic Signals
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Figure 9: Scatter plot of real and synthetic comparison data
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Comparison with Existing work

100

4
90
10 -
® 60
;o
< 30
20
10
0 d
Zhang etal.  Mohan et al. Lingping Qazi et.al Mzrtohzodsoelo
(2021) (2023) et.al (2025) (2025) y 8
W Accuracy 93 96 91 94 97
M F1Score 92 96 90 81 98

Author

W Accuracy BF1Score
Figure 10: Comparison with existing work

Ensemble GAN with Adaptive KNN-SMOTE framework.
Across 100 epochs, the model achieved 97% balanced
accuracy with a cross-entropy loss of 0.084, improving
from 85% accuracy and 0.34 loss at 10 epochs. This steady
convergence without signs of overfitting (Table 3) confirms
that the augmentation strategy successfully reduces
class imbalance and strengthens the classifier’s ability to
recognize minority cases.

The t-SNE projection in Figure 9 shows that synthetic
and real fECG samples occupy closely overlapping feature
spaces, confirming the physiological realism and diversity
of the generated signals.

Table 4 compares studies addressing class imbalance in
the CTU-UHB fetal ECG dataset. The proposed Ensemble
GAN with Adaptive KNN-SMOTE achieved the best results,
with 97% accuracy and 98% F1-score, highlighting its
effectiveness in improving minority-class detection in fetal
health assessment.

Figure 10 compares Accuracy and F1-score between
existing methods and the Ensemble GAN with the Adaptive
KNN-SMOTE approach on the CTU-UHB dataset. The
method effectively improves the classification of minority
classes (suspicious and pathological) by generating
physiologically plausible synthetic samples and refining
them with Adaptive SMOTE.

Limitations and Future Work
Since this study relied solely on the CTU-UHB dataset,
the results may not capture the full variability of fetal ECG
in real-world settings. While GAN-based augmentation
aims for physiological realism, it can still introduce subtle
inaccuracies that risk biasing the classifier. The combined
use of multiple GANs with adaptive SMOTE also increases
computational cost, potentially limiting real-time use.
Moreover, excessive augmentation of minority classes may
cause overfitting if synthetic signals lack sufficient diversity.
Future work should validate this framework on
larger, multi-center datasets to confirm generalizability.
Incorporating explainable Al methods can further enhance
interpretability, strengthen clinical trust, and support
practical adoption.

Conclusion

This study presents a two-stage augmentation framework
that effectively mitigates class imbalance in fetal ECG-based
health assessment. By integrating ensemble GANs (cGAN,
TGAN, WGAN) with Adaptive KNN-SMOTE, the method
generates clinically valid synthetic signals and enhances
classifier performance. Coupled with a hybrid LSTM-CNN,
it achieved 97% accuracy and 98% F1-score, outperforming
existing approaches and significantly improving minority-
class detection. These results demonstrate the framework’s
potential to strengthen fetal monitoring systems and
provide a robust foundation for reliable automated diagnosis
in imbalanced biomedical time-series applications.
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