
Abstract
Imbalanced fetal electrocardiogram (fECG) datasets often hinder reliable fetal health assessment by biasing predictions toward majority 
classes. This article presents a two-stage augmentation framework that integrates three generative models: conditional GAN (cGAN), time-
series GAN (TGAN), and Wasserstein GAN (WGAN) with a K-nearest neighbor (KNN) - based Adaptive Synthetic Minority Over-Sampling 
Technique (SMOTE) algorithm to generate physiologically realistic minority-class signals. Preprocessing steps included the removal of 
missing records and normalization to ensure data consistency. The balanced dataset was used to train a hybrid LSTM–CNN classifier 
designed to capture both long-term temporal dynamics and localized time–frequency features of fECG signals. The proposed method 
improved overall classification accuracy by 4–7% and minority-class F1-scores by up to 10% compared to baseline approaches.  The 
framework achieved 97% accuracy and 98% F1-score by combining ensemble GAN-based augmentation with adaptive oversampling 
for robust and balanced biomedical time-series analysis.
Keywords: Fetal Heart Rate, Data Augmentation, TGAN, WGAN, CGAN and KNN-SMOTE (oversampling), LSTM - CNN.
关键词：胎心率，数据增强，TGAN，WGAN，CGAN和KNN-SMOTE（过采样），LSTM - CNN.
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Introduction
Fetal monitoring has advanced significantly over recent 
decades, driven by technological innovations and evolving 
clinical practices aimed at enhancing maternal and fetal 
safety during labour (Kuzu & Santur, 2022). The use of 
continuous Electronic Fetal Monitoring (EFM), also known 
as cardiotocography, provides real-time recordings of 
fetal heart rate and uterine contractions, allowing early 
detection of fetal distress to prevent hypoxia (Heelan L, 
2013). Monitoring fetal health during pregnancy and labor 
is crucial for avoiding complications such as birth asphyxia, 
neurological damage, or perinatal death. Cardiotocography 

(CTG) is a non-invasive system that records Fetal Heart 
Rate (FHR) and Uterine Contraction (UC) (FIGO 2015).  FHR 
indicates fetal and central nervous system responses to 
blood pressure, blood inundation, and acid- bridgehead 
situation. In clinical practice, FHR analysis helps determine 
fetal tribulation, placental abruption, and chorioamnionitis 
(Rao, Lin, Jia Lu, Hai-Rong Wu, Shu Zhao, Bang-Chun Lu, and 
Hong Li, 2024). 

Figures 1 and 2 Represent The Real-Time Monitoring Of 
The Maternal Woman.  

CTG interpretation is often subjective and varies with 
clinician experience, leading to inconsistent diagnoses and 
delayed interventions. To address this, automated diagnostic 
systems using ML and DL models have been developed for 
real-time fetal monitoring (Sundararajan, D. Wang, and R. 
Min, 2020) (Zhong W, Luo J, Du W, 2023). These methods, 
along with GANs, help extract fetal signals despite maternal 
ECG and noise interference. A major challenge remains 
dataset imbalance, as public databases like CTU-UHB 
contain more normal than pathological cases, limiting model 
generalization (Kahankova, Radana Vilimkova, Dominik 
Vilimek, Seyedali Mirjalili, Vaclav Snasel, Jeng-Shyang Pan, 
Jitka Horakova, and Radek Martinek, 2024). 

FHR traces (Figure 3) show variable decelerations, which 
are sudden drops in heart rate typically linked to umbilical 
cord compression during contractions.
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Figure 1: Placement of CTG monitoring belts 

Figure 2: CTG Monitoring for FHR 

Figure 3: Cardiotocography (CTG) showing variable decelerations.

Researchers have increasingly used Generative Adversarial 
Networks (GANs) to tackle dataset imbalance in fetal ECG 
studies, where they generate realistic synthetic signals to 
support model training (M. Mirza and S. Osindero, 2014). 
Variants such as Conditional GANs (CGANs), Time-series 
GANs (TGANs), and Wasserstein GANs (WGANs) enable 
class-specific synthesis, capture temporal patterns, and 
enhance training stability. Previous works include CT-GANs 
for CTG feature enhancement and FHRGAN for fetal heart 
rate signal generation, though they are limited by single-
architecture use (R. S. Jayanthi and K. Bhavani, 2023), (A. 
Venkata Sriram, N. M. Mohamed Aslam, and G. Premkumar, 

2024). Traditional methods like SMOTE (Synthetic Minority 
Oversampling Technique) can augment minority classes 
but often produce low-variability or redundant samples, 
reducing their effectiveness for physiological data (N. V. 
Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, 2002). 
To address these issues, a hybrid framework combining 
CGAN, TGAN, and WGAN with KNN-based adaptive SMOTE 
has been proposed, allowing for robust augmentation 
of minority classes and the generation of physiologically 
plausible synthetic FECG signals.

The remainder of this paper is organized as follows. 
Section 2 presents a comprehensive review of recent 
literature on data imbalance handling techniques. Section 
3 details the proposed augmentation framework. Section 
4 describes the experimental design and reports the 
evaluation results. Finally, Section 5 summarizes the key 
findings and discusses potential directions for future 
research.

Literature Review
Despite advancements in prenatal care, fetal mortality 
remains a critical global challenge, underscoring the need 
for improved methods of early detection and prevention. 
Recently, more attention has been given to the early 
identification of fetal issues using decision support tools, 
such as machine learning. For these tools to work effectively, 
they need balanced datasets to ensure accurate predictions 
and proper evaluation of parameters such as fetal heart rate 
and uterine contractions. 

Generative Adversarial Networks (GANs) have emerged 
as powerful tools in healthcare, helping to overcome 
challenges related to limited data, privacy concerns, and 
class imbalance (C. Esteban, S. Hyland, and G. Rätsch, 2017). 
GAN-based approaches have been employed to augment 
Cardiotocography (CTG) datasets, enabling the creation 
of physiologically realistic fetal heart rate and uterine 
contraction signals, thereby improving the accuracy and 
generalizability of machine learning models (D. Sujatha and 
A. Kalpana, 2021).

Akpinar MH, Sengur A, Salvi M, Seoni S, Faust O, Mir H, 
Molinari F, Acharya UR, (2024) reviewed the application of 
GANs in healthcare signal processing, specifically targeting 
fetal ECG and cardiotocography (CTG), which are commonly 
used in prenatal monitoring. The study highlighted the 
increasing adoption of conditional GANs (cGANs) and 
CycleGANs for time-series data generation, emphasizing 
their effectiveness in producing realistic and balanced 
datasets. 

Jeong JJ, Tariq A, Adejumo T, Trivedi H, Gichoya JW, 
Banerjee I, (2022) focused on the role of GANs in medical 
imaging, with particular emphasis on fetal ultrasound 
analysis. The research demonstrated that GANs effectively 
augment ultrasound datasets, enhancing the training 
of deep learning models used for segmentation and 
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Table 1: Comparison Summary of Related Studies

Authors Method Used Addresses Class Imbalance Limitations

Akpinar et al. (2024) CONDITIONAL GANS, CYCLEGAN FOR 
TIME-SERIES GENERATION Yes Lacks experimental results; focuses on 

review rather than implementation

Jeong et al. (2022) GANS FOR IMAGE AUGMENTATION 
AND SEGMENTATION Partially Imaging-focused; doesn’t apply to signal 

data or class balancing directly

Amiri et al. (2023) GAN-BASED SIGNAL SYNTHESIS FOR 
WEARABLE MONITORING Yes Mostly conceptual; lacks implementation 

depth

Zhu et al. (2025) ENSEMBLE GANS FOR SYNTHETIC DATA 
GENERATION Yes Not tailored to fetal data; general medical 

application

Yu et al. (2024) CTGGAN (CONDITIONAL GAN FOR FHR 
SIGNALS) Yes Tested on one dataset; lacks real-time/noisy 

scenario validation

Zhang et al. (2022) FHR-GAN (CCWGAN-GP FOR REALISTIC 
FHR GENERATION) Yes No hybrid approach; evaluated on a single 

dataset

Mohan et al. (2023)
HYBRID (GAN + SMOTE + ENSEMBLE 
LEARNING WITH 1D-RESNET, 
XGBOOST)

Yes High complexity; heavy computation; 
feature engineering needed

Dewi et al. (2022) TIME-SERIES GAN (TSGAN) Yes Lacks detailed analysis of GAN limitations 
like mode collapse

Özseven et al. (2024) COMPARISON OF GAN, SMOTE, AND 
VAE Yes Inconsistent baselines across techniques; 

limited to MIT-BIH ECG

Alba et al. (2022) FEATURE SELECTION + 
UNDERSAMPLING + SMOTE (NO GAN) Yes Warns against oversampling before split; no 

GAN used

classification of the GANs in improving fetal imaging and 
prenatal diagnostics.

Amiri, Z., Heidari, A., Navimipour, N.J. (2024) reviewed 
deep learning in biomedical informatics, noting the use 
of GANs for synthesizing fetal signals from wearable and 
remote monitoring devices. Their findings emphasized 
GANs’ potential to enhance data availability, diagnostic 
accuracy, and real-time monitoring and decision-making 
in fetal health care.

Tronchin, Lorenzo, Tommy Löfstedt, Paolo Soda, and 
Valerio Guarrasi (2025) investigated the use of ensemble 
GANs across a range of medical datasets, including both 
signal and image modalities. The combination of multiple 
GAN models was found to produce richer and more diverse 
synthetic data, contributing to greater robustness in 
diagnostic training. Ensemble GANs were shown to enhance 
the generalizability and reliability of working with limited 
or highly variable datasets.
Chen, Lin, Shuicai Wu, and Zhuhuang Zhou (2025) proposed 
Attention R2W-Net, a deep learning framework designed 
to extract fetal ECG (FECG) from maternal abdominal ECG 
signals. The model incorporated recurrent residual modules 
and attention gates to accurately isolate fetal signals, even in 
the presence of noise. Performance across various datasets 
surpassed that of earlier models, indicating strong potential 
for non-invasive fetal cardiac monitoring.

Yu, Zichang, Yating Hu, Yu Lu, Leya Li, Huilin Ge, and 
Xianghua Fu (2024) introduced CTGGAN, a conditional 

GAN developed to generate realistic fetal heart rate (FHR) 
signals using the CTU-UHB dataset. By conditioning on 
class labels such as “normal” and “pathological,” CTGGAN 
effectively produced minority-class samples. However, the 
model was primarily tested on a single dataset and under 
non-real-time conditions, limiting its applicability in more 
complex scenarios.

Zhang, Yefei, Zhidong Zhao, Yanjun Deng, and Xiaohong 
Zhang (2022) developed FHR-GAN, a specialized model 
based on the Wasserstein GAN with gradient penalty 
(CCWGAN-GP), to generate realistic FHR signals. The aim 
was to address issues of data scarcity and class imbalance. 
The model preserved essential signal morphology, aiding 
in improved generalization for downstream tasks.

Mohan et al. (2023) presented a hybrid framework 
that combined GAN-generated samples with ensemble 
learning for the detection of fetal hypoxia. SMOTE was also 
used to improve the representation of the minority class. 
The pipeline integrated linear features, Discrete Wavelet 
Transform (DWT), and 1D-ResNet for feature extraction, with 
XGBoost serving as the ensemble classifier. Nevertheless, 
the system introduced increased complexity and required 
significant computational power along with careful feature 
engineering.

Puspitasari, Riskyana Dewi Intan, M. Anwar Ma’sum, 
Machmud R. Alhamidi, and Wisnu Jatmiko (2022) 
implemented a Time-Series GAN (TSGAN) to synthesize fetal 
heart rate (FHR) signals, aiming to mitigate class imbalance. 
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Table 2 : Parameter in the dataset Table 3: summarizes the accuracy and loss values at selected epochs

S. No. Epochs Balanced Accuracy (%) Cross-entropy Loss

1 10 85.2 0.34

2 20 88.4 0.25

3 30 90.3 0.221

4 40 92.1 0.186

5 50 93.2 0.159

6 60 94.3 0.128

7 70 94.6 0.115

8 80 95.0 0.107

9 90 95.6 0.096

10 100 97.3 0.084

While promising for fetal abnormality detection, the study 
did not thoroughly investigate challenges like mode collapse 
or the model’s ability to generalize to unseen data.
Özseven, Turgut (2024), evaluated GANs, SMOTE, and 
Variational Autoencoders (VAE) for data augmentation in 
ECG signal classification. GAN-based augmentation resulted 
in an approximate increase in classification accuracy, while 
SMOTE achieved the best balance performance at 86.4%. 
VAE outperformed other methods when trained solely on 
synthetic data. However, comparisons across methods were 
hindered by inconsistent baseline metrics.

Nieto-del-Amor, Félix, Gema Prats-Boluda, Javier Garcia-
Casado, Alba Diaz-Martinez, Vicente Jose Diago-Almela, 
Rogelio Monfort-Ortiz, Dongmei Hao, and Yiyao Ye-Lin, 
(2022) addressed class imbalance in preterm birth prediction 
using electrohysterography (EHG) signals. Optimal results 
were achieved by combining feature selection with 
undersampling of the validation set. The study emphasized 
the effectiveness of resampling strategies like SMOTE. The 
authors cautioned against applying oversampling before 
data splitting to avoid overfitting
The literature review highlights the importance of 
resampling methods like SMOTE combined with Generative 
Adversarial Networks (GANs) in addressing class imbalance 
in datasets for prenatal health monitoring. Techniques such 
as conditional GANs, CycleGANs, CTGGAN, and FHR-GAN 
can generate realistic fetal heart rate (FHR) and fetal ECG 
data. This improves the accuracy, recall, and precision of 
diagnostic models. Additionally, studies that combine 
GANs with feature integration and ensemble learning have 
achieved further improvements, especially in identifying 
abnormal cases within minority classes.

Methodology
This section describes the dataset, methods, flow diagram, 
and evaluation metrics used for the proposed techniques 
(Ensemble of GANs and KNN-based adaptive SMOTE).

Dataset
The proposed method employs a validated dataset from the 
Czech Technical University (CTU) in Prague and the University 
Hospital in Brno (UHB), comprising 552 cardiotocography 
(CTG) recordings. These recordings were carefully selected 

from a larger set of 9,164 collected between 2010 and 2012 
at UHB. Each CTG recording begins no more than 90 minutes 
before delivery and lasts up to 90 minutes, capturing the 
critical final stages of labor (Goldberger, A., L. Amaral, L. 
Glass, J. Hausdorff, P. C. Ivanov, R. Mark, J. E. Mietus, G. B. 
Moody, C. K. Peng, and H. E. Stanley, 2000)

The dataset comprises two physiological signals: Fetal 
Heart Rate (FHR) and Uterine Contraction (UC), both sampled 
at a rate of 4 Hz. Figure 4 presents the FHR and Uterine 
Contraction signals for normal data. Table 2 presents the 
parameters involved in the dataset that enhance the signal 
quality. This high-resolution sampling enables detailed 
analysis of fetal responses to labour activity. 

Proposed Methodology
The proposed approach addresses the data imbalance of 
the minority class to enhance fetal health prediction by 
combining three GAN models—Wasserstein GAN (WGAN), 
Conditional GAN (CGAN), and Time-series GAN (TGAN) 
within an ensemble framework, producing synthetic FHR/UC 
signals for underrepresented classes (Normal cases where 
pH>=7.05, in suspicious the pH>=7.05 and pH<7.05 then in 
Pathological cases pH<7.05). The generated data is further 
improved using KNN-based Adaptive SMOTE, which helps 
ensure that interpolated samples preserve physiologically 
plausible continuity across high-dimensional features. 
Figure 5 illustrates the flow of contributions to the data 
imbalance for minority classes (pathological and suspicious).

Data Quality Assessment
A preliminary step is taken to identify and address missing 
values, which helps prevent incomplete data from causing 
bias or reducing the effectiveness of later learning models. 
In the dataset, where   represents the number of samples 
and  for the number of features, we perform a systematic 
check for invalid or missing entries. The locations of these 
missing values are identified as follows: 
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Figure 4: FHR and Uterine Activity Signals

Figure 5: The block diagram of the Proposed Work

Table 4: Comparison with existing work 

Author Method used Dataset Performance

Zhang et. al (2021) CCWGAN-GP (FHRGAN) CTU-UHB Accuracy = 93.6%
F1-Score = 92.8%

Mohan et. al (2023) GAN + SMOTE + Ensemble (Xgboost, Resnet) CTU - UHB Accuracy = 96.2%
F1- Score = 96 %

Lingping et. al (2025) Borderline-SMOTE CTU-UHB Accuracy = 91.6%
F1score = 90%

Qazi et. al (2025) GAN CTU – UHB Accuracy = 94.2 %
F1 Score = 81.1 %

Proposed Methodology Ensemble GAN + KNN-Based Adaptive SMOTE CTU – UHB Accuracy = 97 %
F1 Score = 98 %

Detection Criteria
A value   is flagged as missing if it satisfies:

=  		  (1)

where  the multivariate time-series containing FHR and 
UG signals, and  .

Missing Value Handling
•	 If  (pH label) is missing, remove the instance: 

 		   (2)

•	 For missing signal points in  :
•	 If gap length     fill via spline interpolation:

 					    (3)

where   are cubic B-spline basis functions.
•	 If  remove the record.		  (4)

Classification of the dataset
•	 The CTU-UHB Fetal CTG Dataset is partitioned into three 

disjoint subsets (Normal, Suspicious and Pathological) 
based on the target label  (the pH value associated 
with each CTG record).

𝐷𝐷𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  =  { 𝑋𝑋𝑖𝑖  ∕  𝑦𝑦𝑖𝑖  ≥  7.15 } 

  𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  =  {𝑋𝑋𝑖𝑖   ⁄ 7.05 ≤  𝑦𝑦𝑖𝑖 <  7.15 } 

𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  =  {𝑋𝑋𝑖𝑖  / 𝑦𝑦𝑖𝑖  <  7.05 }    (4) 

 

		      	 (5)

Preprocessing
Normalization scales data to a standard range or distribution, 
improving learning and convergence. Zero padding adds 
zeros to data to align shapes or preserve dimensions. Each 
sequence  is normalized:

 𝑋𝑋�𝑖𝑖 =  
𝑋𝑋𝑖𝑖 −  𝜇𝜇𝑋𝑋𝑖𝑖
𝜎𝜎𝑋𝑋𝑖𝑖

 					     (6)

where   and  are the mean and standard deviation of 
the sequence.Sequences are zero-padded or truncated to 
length : 

𝑋𝑋𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝 =  �

[𝑋𝑋𝑖𝑖 , 0, … , 0]  𝑖𝑖𝑖𝑖 |𝑋𝑋𝑖𝑖| < 𝐿𝐿
𝑋𝑋𝑖𝑖  [1 ∶ 𝐿𝐿]  𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  			   (7)

Ensemble GAN Training
This phase uses a hybrid ensemble that incorporates 
TimeGAN, WGAN-GP, and CGAN to capture temporal 
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dynamics and class-conditioned variation in pathological 
and suspicious signals.

Conditional GAN (CGAN)
Class-conditional data distributions  (  | ) pdata x y are learned 
by CGAN by conditioning the discriminator and generator 
on auxiliary data, including class labels or attributes.

 (8)

TGAN 	
TimeGAN variants retain both the statistical and temporal 
features of the original signals. G uses a recurrent chain  
to model sequence dynamics, and outputs ˆ  = G ( ).

					     (9)

WGAN
WGAN minimizes the Wasserstein (Earth Mover’s) distance 
between the generated and real distributions and produces 
a real-valued score.

	 (10)

The union of CGAN TGAN WGANS S S∪ ∪  typically, train separate 
generators and discriminators critics for each branch and 
combine their outputs.

 	 (11)

Evaluate with Discriminator
Synthetic samples are scored using the discriminator  A 
higher threshold τ means stricter quality control and fewer 
synthetic samples will pass. A sample ˆ  is retained if:

					     (12)

KNN–Adaptive SMOTE
SMOTE (Synthetic Minority Oversampling Technique) creates 
artificial minority class samples by interpolating between a 
minority instance and one of its closest minority neighbors. 
Let ​ be a minority sample, and ( ) k mN X it’s K-Nearest 
Neighbors in the minority set. Find k-nearest neighbors:

( ) { }1 2 3    ,  ,  ,k i i i i ikNN x x x x x = … 
Synthetic interpolation is:	

		  (13)

where ( )  nn k mX N X∈  and ( )~ 0,1λ   . The adaptive version 
modifies  based on local density:

				    (14)

where ( ) mXρ is the density around ​.

Final Balanced Dataset
The final dataset is:

  (15)
where  represents synthetic samples from GAN + 

SMOTE.

Classifier Input
After GAN + KNN-Adaptive SMOTE augmentation, the 
balanced dataset is used to train a hybrid LSTM–CNN 
classifier:
•	 LSTM captures temporal dependencies:
•	

		  (16)
After feature extraction from LSTM + CNN, the final hidden 
representation ​ (or a pooled CNN feature map) is fed 
into a dense layer:

		   	  (17)

Loss Function — Categorical Cross-Entropy c. The objective 
is to minimize the classification loss:

				     (18)
Where:

•	
{ }0,1cy ∈  is the true one-hot label

•	 ˆ ​ is the predicted probability for class 
A balanced dataset is evaluated using a hybrid LSTM–

CNN classifier, where CNN layers extract local features and 
LSTM modules capture temporal dependencies, yielding 
robust classification of prenatal health conditions.

Algorithm 1: Pseudocode for Data Augmentation 
Using Ensemble GANs with Adaptive KNN-SMOTE
Input: D: Original dataset 

Handle Missing Value: 
•	 If pH label ( is missing, remove the instance: 

( ){ },  i i iD D X y y is missing←  |

Classify the dataset
Assign fetal condition classes based on pH thresholds:

 ,                7.1                     
 ,          7.15  7.05   

,           7.05                    
label

Normal if pH
D Suspicious if pH and pH

Patholocial if pH

≥
= < ≥
 <

Preprocess
•	 Normalize each sequence   x

i
x

x meanX
std

 −
= 
 

•	 Zero-padded to the length L  , 0, 0pad
i iX X= …

Ensemble GAN-Based Augmentation 
•	 Train three GAN models on minority classes.
•	 cGAN: ( )( )  GL E D G z =−  
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•	 TGAN: ( ) ~ ( | ),   z p z x x G z=

•	  WGAN
: ( | )  _G z y x y− >

•	 Combine Synthetic Data:

KNN-Based Adaptive SMOTE
•	 Merge original and generated samples: 	

 m orig GAND D D← ∪

•	 Find minority sample 

( ) { }1 2 3 :      ,  ,  ,k i i i i ikxi NN x x x x x = … 
•	 Collect all SMOTE-generated samples: 

{ } { } ( ){ } _   _ ^  D smote x new j = 
•	 Repeat until all classes are balanced: 

          Dnorm Dsusp Dpath≈ ≈| | | | | |

Final Dataset Construction
Combine all data:            augD Dnorm Dsusp Dpath= ∪ ∪| | | | | |

Train Classifier
•	 Use  augD to train the classif ier with LSTM + CNN  

•	 Also fed into the dense layer by the Relu activation 
function:  

Output: Balanced Dataset.
The proposed augmentation workflow is outlined in 

Algorithm 1.
The approach systematically preprocesses the data, 

generates physiologically realistic synthetic signals, and 
ensures balanced class distributions before classifier training. 

Experimental Results
The effectiveness of the proposed ensemble GAN with 
Adaptive KNN-SMOTE was evaluated on the CTU–
UHB dataset. Experiments assessed the impact of the 
augmentation strategy on class balance, signal diversity, and 
classification accuracy. As illustrated in Figure 6, the dataset 
exhibited a pronounced imbalance, with 81% Normal, 12% 
Suspicious, and 7% Pathological cases, which can bias model 
training toward the majority class.

After applying the proposed Ensemble GAN with 
Adaptive KNN-SMOTE, the dataset achieved near-uniform 
distribution, with 447 Normal, 430 Suspicious, and 410 
Pathological samples (Figure 7). This balance reduced bias, 
improved generalization, and enhanced the classifier’s 
ability to detect minority cases accurately.

Figure 8 illustrates representative synthetic fECG signals 
generated by WGAN, cGAN, and TGAN, normalized for 
visualization. 

Classification Metrics
A hybrid LSTM–CNN classifier was trained on the augmented 
dataset to evaluate the effectiveness of the proposed 

Figure 6: Distribution of Dataset CTU-UHB before Augmentation

Figure 7: Distribution of dataset after the Data Augmentation

Figure 8: Synthetic signals generated by Ensemble GAN

Figure 9: Scatter plot of real and synthetic comparison data
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Figure 10: Comparison with existing work

Ensemble GAN with Adaptive KNN-SMOTE framework. 
Across 100 epochs, the model achieved 97% balanced 
accuracy with a cross-entropy loss of 0.084, improving 
from 85% accuracy and 0.34 loss at 10 epochs. This steady 
convergence without signs of overfitting (Table 3) confirms 
that the augmentation strategy successfully reduces 
class imbalance and strengthens the classifier’s ability to 
recognize minority cases.

The t-SNE projection in Figure 9 shows that synthetic 
and real fECG samples occupy closely overlapping feature 
spaces, confirming the physiological realism and diversity 
of the generated signals.

Table 4 compares studies addressing class imbalance in 
the CTU–UHB fetal ECG dataset. The proposed Ensemble 
GAN with Adaptive KNN-SMOTE achieved the best results, 
with 97% accuracy and 98% F1-score, highlighting its 
effectiveness in improving minority-class detection in fetal 
health assessment.

Figure 10 compares Accuracy and F1-score between 
existing methods and the Ensemble GAN with the Adaptive 
KNN-SMOTE approach on the CTU–UHB dataset. The 
method effectively improves the classification of minority 
classes (suspicious and pathological) by generating 
physiologically plausible synthetic samples and refining 
them with Adaptive SMOTE. 

Limitations and Future Work
Since this study relied solely on the CTU–UHB dataset, 
the results may not capture the full variability of fetal ECG 
in real-world settings. While GAN-based augmentation 
aims for physiological realism, it can still introduce subtle 
inaccuracies that risk biasing the classifier. The combined 
use of multiple GANs with adaptive SMOTE also increases 
computational cost, potentially limiting real-time use. 
Moreover, excessive augmentation of minority classes may 
cause overfitting if synthetic signals lack sufficient diversity. 

Future work should validate this framework on 
larger, multi-center datasets to confirm generalizability. 
Incorporating explainable AI methods can further enhance 
interpretability, strengthen clinical trust, and support 
practical adoption.

Conclusion
This study presents a two-stage augmentation framework 
that effectively mitigates class imbalance in fetal ECG-based 
health assessment. By integrating ensemble GANs (cGAN, 
TGAN, WGAN) with Adaptive KNN-SMOTE, the method 
generates clinically valid synthetic signals and enhances 
classifier performance. Coupled with a hybrid LSTM–CNN, 
it achieved 97% accuracy and 98% F1-score, outperforming 
existing approaches and significantly improving minority-
class detection. These results demonstrate the framework’s 
potential to strengthen fetal monitoring systems and 
provide a robust foundation for reliable automated diagnosis 
in imbalanced biomedical time-series applications.
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