Hybrid GAN with KNN - SMOTE Approach for Class-Imbalance in Non-Invasive Fetal ECG Monitoring
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.9.11Keywords:
Fetal Heart Rate, Data Augmentation, TGAN, WGAN, CGAN and KNN-SMOTE (oversampling), LSTM - CNN.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Imbalanced fetal electrocardiogram (fECG) datasets often hinder reliable fetal health assessment by biasing predictions toward majority classes. This article presents a two-stage augmentation framework that integrates three generative models: conditional GAN (cGAN), time-series GAN (TGAN), and Wasserstein GAN (WGAN) with a K-nearest neighbor (KNN) - based Adaptive Synthetic Minority Over-Sampling Technique (SMOTE) algorithm to generate physiologically realistic minority-class signals. Preprocessing steps included the removal of missing records and normalization to ensure data consistency. The balanced dataset was used to train a hybrid LSTM–CNN classifier designed to capture both long-term temporal dynamics and localized time–frequency features of fECG signals. The proposed method improved overall classification accuracy by 4–7% and minority-class F1-scores by up to 10% compared to baseline approaches. The framework achieved 97% accuracy and 98% F1-score by combining ensemble GAN-based augmentation with adaptive oversampling for robust and balanced biomedical time-series analysis.Abstract
How to Cite
Downloads
Similar Articles
- Kapil ahuja, Ekta Rani, Soniya Devi, Exploring the dynamic landscape of environmental, social, and governance literature by using bibliometric analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Anurag B. Gohain1, Devanand Mishra, Vithou U Mera, Content analysis of academic library website with special reference to the central universities in Northeast India , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.

