Hybrid GAN with KNN - SMOTE Approach for Class-Imbalance in Non-Invasive Fetal ECG Monitoring
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.9.11Keywords:
Fetal Heart Rate, Data Augmentation, TGAN, WGAN, CGAN and KNN-SMOTE (oversampling), LSTM - CNN.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Imbalanced fetal electrocardiogram (fECG) datasets often hinder reliable fetal health assessment by biasing predictions toward majority classes. This article presents a two-stage augmentation framework that integrates three generative models: conditional GAN (cGAN), time-series GAN (TGAN), and Wasserstein GAN (WGAN) with a K-nearest neighbor (KNN) - based Adaptive Synthetic Minority Over-Sampling Technique (SMOTE) algorithm to generate physiologically realistic minority-class signals. Preprocessing steps included the removal of missing records and normalization to ensure data consistency. The balanced dataset was used to train a hybrid LSTM–CNN classifier designed to capture both long-term temporal dynamics and localized time–frequency features of fECG signals. The proposed method improved overall classification accuracy by 4–7% and minority-class F1-scores by up to 10% compared to baseline approaches. The framework achieved 97% accuracy and 98% F1-score by combining ensemble GAN-based augmentation with adaptive oversampling for robust and balanced biomedical time-series analysis.Abstract
How to Cite
Downloads
Similar Articles
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Priya Tiwari, Bharat Kasar, Vibhu Tripathi, Decoding Investor’s behavior in tax saving mutual fund: A multi-item scale for evaluating investors’ category , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Amanda Quist Okronipa, Isaac Asampana, Jones Yeboah Nyame, Exploring e-learning system loyalty: The role of system quality and satisfaction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sabana Backer, Prasanth A.P, The influence of attitude on green-cosmetics purchase intention (pi) in central Kerala , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Ravi Kumar P, C. Gowri Shankar, Optimizing power converters for enhanced electric vehicle propulsion: A novel research methodology , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Rupesh Mandal, Bobby Sharma, Dibyajyoti Chutia , Smart flood monitoring in Guwahati city: A LoRa-based AIoT and edge computing sensor framework , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, Inclusive education for children with learning difficulties in Mauritius: An analytical study among select stakeholders , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Prerna Khanna, Satinder Kumar, Exploring the expansion trajectory of the Indian automobile sector , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 34 35 36 37 38 39 40 41 42 43 > >>
You may also start an advanced similarity search for this article.

