Lightweight Feature Selection Method using Quantum Statistical Ranking and Hybrid Beetle-Bat Optimization for Smart Farming
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.9.04Keywords:
Feature selection, IoT, precision agriculture, optimization, quantum statistics, beetle antennae search, binary bat algorithm, high-dimensional dataDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The advancement of IoT-enabled smart farming systems has generated massive high-dimensional datasets, creating challenges in feature selection, classification accuracy, and computational efficiency. Existing feature selection techniques, including ReliefF, LASSO, and Recursive Feature Elimination (RFE), achieve moderate performance but struggle with scalability and runtime constraints. Similarly, wrapper-based optimization methods like Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) provide higher accuracy but incur significant computational overhead, making them unsuitable for real-time IoT applications. To address these limitations, this study proposes a Quantum-Enhanced Mutual Rank Index with Beetle-Bat Optimization (QStat-BBO) framework for lightweight and adaptive feature selection. The proposed approach integrates Quantum-Enhanced Mutual Rank Index (Q-MRI) to prioritize features based on mutual dependencies and utilizes Beetle-Bat Optimization (BBO) to refine optimal feature subsets efficiently. Three IoT-based agricultural datasets from smart farming environments are used to evaluate the framework. Experimental results demonstrate that QStat-BBO consistently outperforms state-of-the-art methods, achieving up to 97.4% classification accuracy, 0.975 F1-score, and an average feature reduction rate of 63.5%, while reducing runtime by nearly 40% compared to traditional metaheuristics. These results confirm the effectiveness of QStat-BBO in enhancing prediction performance, reducing redundancy, and improving computational efficiency, making it well-suited for resource-constrained IoT-based agricultural analytics.Abstract
How to Cite
Downloads
Similar Articles
- Nithya Raju , Shruthi Deivigarajan, Sindhuja Santhakumar, Sneha Balamurugan, Challenges encountered by healthcare professionals in monitoring adverse events due to medical devices-A review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- P. N. Malleswari, P. V. S. Gupta, S. V. M. Vardhan, D. Ramachandran, Quantitative estimation of ethanol content in eribulin mesylate injection using headspace gas chromatographic with flame ionization detector [HS-GC-FID] , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sampa Mondal, Nilanjana Chatterjee, Baibaswata Bhattacharjee, Positive impact of using α-Fe2O3 nanoparticles as dietary supplements on some hematological parameters of an economically important minor carp Labeo bata (Hamilton, 1822) , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Ganga Gudi, Mallamma V Reddy, Hanumanthappa M, Enhancing Kannada text-to-speech and braille conversion with deep learning for the visually impaired , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- R. Chandra, R. P. Singh, B. K. Prasad, Effect of Genotype and Explant on Shoot Regeneration in Brassica juncea , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Rama Shankar Dubey, M.A. Naidu, Ajay Kumar Shukla, Awadhesh Kumar Shukla, Manish Kumar, Sonia Verma, Pramod Kumar Mourya, Application of Bioactive Molecules in the Treatment and Management of Type-1 Diabetic Disease , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- K. Vani, S. Sujatha, Fault tolerance systems in open source cloud computing environments–A systematic review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Anurag B. Gohain1, Devanand Mishra, Vithou U Mera, Content analysis of academic library website with special reference to the central universities in Northeast India , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Muhammed Jouhar K. K., Dr. K. Aravinthan, An improved social media behavioral analysis using deep learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.

