{
|

~=
A=a
The Scientific Temper (2025) Vol. 16 (9): 4731-4740 ‘ ] 7 E-ISSN: 2231-6396, ISSN: 0976-8653
Doi: 10.58414/SCIENTIFICTEMPER.2025.16.9.04 https://scientifictemper.com/

RESEARCH ARTICLE

Lightweight Feature Selection Method using Quantum
Statistical Ranking and Hybrid Beetle-Bat Optimization for
Smart Farming

S. Aasha®’, R. Sugumar?

Abstract

The advancement of loT-enabled smart farming systems has generated massive high-dimensional datasets, creating challenges in
feature selection, classification accuracy, and computational efficiency. Existing feature selection techniques, including ReliefF, LASSO,
and Recursive Feature Elimination (RFE), achieve moderate performance but struggle with scalability and runtime constraints. Similarly,
wrapper-based optimization methods like Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) provide higher accuracy
but incur significant computational overhead, making them unsuitable for real-time loT applications. To address these limitations, this
study proposes a Quantum-Enhanced Mutual Rank Index with Beetle-Bat Optimization (QStat-BBO) framework for lightweight and
adaptive feature selection. The proposed approach integrates Quantum-Enhanced Mutual Rank Index (Q-MRI) to prioritize features
based on mutual dependencies and utilizes Beetle-Bat Optimization (BBO) to refine optimal feature subsets efficiently. Three loT-based
agricultural datasets from smart farming environments are used to evaluate the framework. Experimental results demonstrate that
QStat-BBO consistently outperforms state-of-the-art methods, achieving up to 97.4% classification accuracy, 0.975 F1-score, and an
average feature reduction rate of 63.5%, while reducing runtime by nearly 40% compared to traditional metaheuristics. These results
confirm the effectiveness of QStat-BBO in enhancing prediction performance, reducing redundancy, and improving computational
efficiency, making it well-suited for resource-constrained loT-based agricultural analytics.

Keywords: Feature Selection, Precision Agriculture, Optimization, Quantum Statistics, Beetle antennae search, Binary Bat algorithm,
high-dimensional data, loT.

Introduction

The rapid growth of Internet of Things (IoT) technologies
in agriculture has transformed conventional farming
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practices into data-driven decision-making systems (Aasha
and Sugumar, 2025). Smart farming applications now rely
heavily on sensor networks, drone-based imaging, and
automated data collection to improve crop yield prediction,
pest detection, and resource management Rahmah et
al., 2025). The increasing deployment of loT devices has
resulted in the generation of high-dimensional datasets
containing heterogeneous attributes, such as soil moisture,
temperature, pH levels, weather patterns, crop health
indices, and sensor-driven yield estimations (Liu et al., 2025).

While these data-rich environments enable advanced
machine learning (ML) models to provide valuable insights,
they also introduce computational and analytical challenges
(Bozal et al., 2025). Many agricultural datasets contain
redundant, irrelevant, or noisy features that degrade
classification performance, slow down computation, and
reduce the generalizability of predictive models (Lanke and
Chandak, 2025). As a result, feature selection has become
a critical step for improving accuracy, interpretability, and
runtime efficiency in smart farming applications.

Published: 23/09/2025
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Traditional feature selection approaches, such as
ReliefF, LASSO, and Recursive Feature Elimination (RFE),
have demonstrated effectiveness for small to medium-
sized datasets but struggle to scale with high-dimensional
loT environments. Similarly, wrapper-based methods like
Genetic Algorithms (GA), Particle Swarm Optimization
(PSO), and Bat Algorithms (BA) offer improved accuracy
but suffer from high computational overhead and runtime
inefficiency, making them unsuitable for real-time
agricultural applications.

Recent studies have highlighted the need for lightweight
and adaptive feature selection algorithms capable of
balancing predictive performance with computational
efficiency. For instance, loT-based smart farming systems
demand solutions that process continuous sensor data
streams under limited hardware constraints, while still
providing robust classification and prediction capabilities.

This motivates the development of a hybrid optimization
approach that integrates a fast statistical feature ranking
technique with an adaptive metaheuristic search mechanism
to handle high-dimensional agricultural datasets effectively.

Despite advancementsin loT-enabled smart farming and
agricultural analytics, several challenges persist:

« High-Dimensional Feature Spaces — Agricultural datasets
contain hundreds of features from diverse modalities,
such as soil, crop, and weather parameters, making
feature ranking computationally complex.

«  Redundancy and Noise - Existing feature selection
algorithms struggle to differentiate between relevant
and redundant attributes, leading to model overfitting
and degraded generalization performance.

Computational Inefficiency - Wrapper-based
metaheuristics require multiple classifier evaluations,
resulting in high runtime costs, which is unsuitable for
real-time loT systems.

« Lack of Lightweight Optimization Strategies - Most
existing hybrid techniques fail to balance prediction
accuracy and processing efficiency, especially on
resource-constrained loT devices.

To overcome these limitations, there is a need for a

novel hybrid feature selection algorithm that leverages

fast statistical ranking while minimizing computational
complexity through an adaptive search mechanism.

This study proposes a Quantum-Enhanced Mutual Rank
Index with Beetle-Bat Optimization (QStat-BBO) framework
to address the above challenges. The objectives are:

To develop a quantum-enhanced statistical ranking
method (Q-MRI) to measure mutual dependency
between features and class labels, enabling efficient
initial feature prioritization.

To design a Beetle-Bat Optimization (BBO) algorithm,
integrating the exploration capability of Bat Algorithm
with the exploitation strength of Beetle Antennae
Search, to refine feature subsets adaptively.

« Toevaluate the proposed framework on three real-world
loT-based smart farming datasets to ensure scalability,
robustness, and cross-dataset generalization.

The major contributions of this paper are:

« A novel hybrid optimization framework combining
quantum-enhanced statistical ranking with a
lightweight adaptive metaheuristic.

- Demonstrated improvements in classification accuracy
and feature reduction rate while reducing computational
cost.

« Cross-validation across three diverse loT-enabled
agricultural datasets, ensuring robust generalization.

«  Performance comparison against seven baseline feature
selection techniques, showing significant gains in
efficiency and scalability.

Related Works

This section provides a comprehensive review of twelve
research articles from the provided dataset, highlighting
their methodologies, findings, and limitations relevant
to feature selection, lightweight optimization, and loT-
based smart farming systems. Kraev et al. (2024) proposed
SHAP-Select, a feature selection technique based on
Shapley values to enhance interpretability in loT-based
smart farming. By leveraging linear and logistic regression
models, the method provided superior prediction accuracy
compared to conventional wrappers. However, the reliance
on wrapper evaluations increased computational overhead,
making it less practical for large-scale loT datasets.

Sindhu and Arockiam (2024) developed a Lightweight
Selective Stacking Ensemble Learning (LSSDEL) model,
integrating loT sensor streams with machine learning
for agricultural yield prediction. The model achieved
97.8% accuracy by combining selective stacking with L1
regularization. Despite high predictive performance, the
framework faced challenges in resource-constrained loT
environments. Lv (2024) proposed a lightweight CNN-
Transformer model for detecting crop diseases on mobile
loT platforms. The method offered high accuracy while
reducing storage and computational costs, making it
suitable for embedded smart farming devices. However,
the absence of integrated feature selection limited the
model’s interpretability and adaptability to dynamic loT
environments. Wang et al. (2024) introduced a Partial
Convolution Block (PConv)-based algorithm for tomato
ripeness detection. The method effectively combined
convolutional neural networks with loT-driven image
inputs, achieving 86.8% average precision. Yet, performance
degraded for fine-grained ripeness levels, highlighting a
need for improved discriminative feature ranking.

Yang et al.(2023) designed a lightweight C3Faster module
integrated with deep learning to enhance pest detection
in crops. While the approach reduced computational
complexity and detection time, the dependency on deep
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architecturesincreased energy consumption, making it less
suitable for low-power loT nodes. Patel et al. (2024) proposed
a machine learning-driven wrapper method for feature
selection, improving prediction performance in loT-based
agriculture. By employing iterative feature evaluation with
classifiers, the model achieved 88.7% accuracy. However,
the approach suffered from high runtime costs due to
exhaustive search.

Sonekar (2024) developed SmartFarm, a machine
learning framework integrating decision trees and neural
networks for crop yield prediction using loT data. The
system demonstrated significant improvements in soil
classification and irrigation recommendations but lacked
effective dimensionality reduction strategies, leading to
reduced scalability. Rane et al. (2024) explored integrating
Al, machine learning, and loT to automate agricultural
decision-making. The framework analyzed soil health,
weather patterns, and irrigation demands using real-time
loT sensors. While achieving practical success, challenges
arose in data privacy and scalability when deploying on
heterogeneous loT infrastructures.

Padeiro et al.(2023) proposed a lightweight convolutional
neural network (CNN) architecture for real-time crop disease
classification. The method achieved high accuracy and
low latency but relied on visual inspection datasets, which
limited generalization across diverse loT-driven agricultural
inputs. Kamalov et al. (2023) introduced Nested Ensemble
Selection (NES), combining filter and wrapper methods for
hybrid feature selection. NES effectively identified relevant,
redundant, and noisy features, outperforming traditional
feature ranking techniques. However, the computational
complexity remained substantial for large-scale loT
applications.

Mim et al. (2024) presented an Overlapping MultiSURF
(OMsurf) method to improve classification performance in
datasets with overlapping classes. The approach addressed
redundancy but failed to exploit nonlinear feature
interactions, limiting its efficiency for heterogeneous loT
data. Wang and Fu (2024) proposed an improved RTMDet++
detection model designed to reduce parameters and
computational costs for loT devices. By optimizing detection
accuracy and reducing model size by 15.5%, RTMDet++
showed promise but still struggled with low accuracy in
natural scenes.

Proposed Methodology

Overview

The proposed QStat-BBO framework is structured to achieve
high accuracy and efficiency by adopting a two-phase
approach for feature selection. Initially, it applies to a fast yet
effective statistical ranking method known as the Quantum-
enhanced Mutual Rank Index (Q-MRI). This index combines
mutual information, Pearson correlation, and a quantum-

inspired entropy metric to assess each feature’s relevance in
the dataset. This phase aims to eliminate highly redundant
orirrelevant features before optimization, ensuring reduced
dimensionality and faster convergence in the subsequent
search phase.

Following the stage of the ranking, the second phase
involves a hybrid metaheuristic algorithm that integrates
Beetle Antennae Search (BAS) with Binary Bat Optimization
(BBO). The hybrid algorithm operates on the reduced feature
space and efficiently explores possible feature subsets
to determine an optimal combination that maximizes
classification performance while maintaining compactness.
BAS contributes by enhancing local search through
directional sensing, whereas BBO provides robust global
exploration using frequency-tuned binary movements. The
fusion of these techniques results in a balanced optimizer
capable of both precise local refinement and broad solution
space navigation.

This dual-stage design not only reduces computational
overhead but also adapts well to the complexity of high-
dimensional agricultural datasets. It effectively filters out
noise and retains features critical to predictive tasks, making
the framework particularly suitable for applications in smart
agriculture, where lightweight and scalable solutions are
imperative.

Quantum-Enhanced Mutual Rank Index (Q-MRI)

The Quantum-Enhanced Mutual Rank Index (Q-MRI)
serves as the initial step in the proposed feature selection
framework, designed to score and rank features prior to
optimization. This component integrates three statistically
and physically motivated measures: mutual information,
Pearson correlation, and a novel entropy-based quantum-
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Figure 1: Overview of the proposed work
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inspired score. Together, they capture both deterministic
and probabilistic dependencies between input features and
the target variable in agricultural datasets.

The core principle behind Q-MRlI is to not only identify
features that exhibit strong correlation or dependency
with the output class but also evaluate their distributional
uncertainty in a probabilistic space. This hybrid assessment
offers robustness against irrelevant or redundant features
that frequently appear in high-dimensional environmental
or sensor-driven datasets.

The Q-MRI score for a feature
target variable  is defined as:

with respect to the

Q—Aﬂ%[(ﬁ):xl-]\ﬂ(ﬁ,y)+xz~|PC(ﬂ,y)|+X3~Q(ﬁ) M

where:

«  MI(f,y) denotes the mutual information between
feature and class labely, representing the amount of
information shared.

PC(f,y) is the absolute value of the Pearson correlation
coefficient, capturing linear associations.

0(f) isaquantum-inspired entropy term that evaluates
the intrinsic variability and uncertainty of the feature
values.

«  ALA,L A, are scalar weights controlling the influence of
each metric, typically set to 0.4,0.3, and 0.3 respectively.

Quantum-Inspired Entropy Component
Unlike classical entropy, the 0(f) term is derived using
concepts inspired by the Born Rule in quantum mechanics.
Each feature vector is treated as a quantum state, where its
components represent probability amplitudes. The steps
for calculating the quantum-inspired entropy are as follows:
« Normalize the feature vector  using the L2 norm to
simulate a unit-length quantum state:

vy =L @
V2

Here, v, is the amplitude for the j" instance of feature
and n is the total number of instances.
Compute the probability distribution by taking the
squared magnitude of these amplitudes:

2

3)

Py =V,

- Evaluate the entropy using the standard Shannon
formulation, but applied to the quantum-derived
probabilities:

0(£)=-2"_p,log(p,) @

This entropy reflects how uniformly the feature values are
distributed. Features with highly skewed or deterministic

distributions tend to have low entropy, whereas features
with evenly spread or complex distributions yield higher
entropy values. In agriculture, where environmental
or seasonal variability may alter feature behavior, this
entropy score becomes essential to assess robustness and
generalization.

Manual Example
Consider a feature vector £, =[2,1,3], which might represent
three soil moisture readings. The L2 norm is:

[£] =2+ +3* =14
The quantum amplitudes become:

\u{ 2 13 }z[0.535,0.267,0.802]

Via* i ia

The associated probability distribution is:

p =[0.286,0.071,0.643]

Then, the quantum entropy is calculated as:

0(f,)=-(0.28610g0.286+0.07110g 0.071+0.64310g 0.643)  0.918

This score is normalized across all features and combined
with the mutual information and correlation components to
generate the final Q-MRI score. Features with higher scores
are deemed more informative and are selected for further
exploration by the optimization phase.

Beetle-Bat Optimization (BBO)

Following the ranking stage of Q-MRI, the reduced set of
features is subjected to a metaheuristic search to determine
the most optimal subset for model learning. The goal
is to identify a combination of features that maximizes
classification accuracy while minimizing the number
of selected features, thereby achieving compactness
and performance balance. To this end, a novel hybrid
metaheuristic called Beetle-Bat Optimization (BBO) is
introduced, which merges the local sensing strength of the
Beetle Antennae Search (BAS) with the global exploration
capabilities of the Binary Bat Algorithm (BBA).

This hybrid framework leverages the ability of BAS
to exploit the local neighborhood through directional
evaluation, while BBA facilitates adaptive global jumps
based on velocity and frequency adjustments. Such a
hybridization ensures convergence stability, diversity in the
search space, and reduced computational effort, making it
well-suited for high-dimensional agricultural datasets that
often contain overlapping, noisy, or redundant features.

Encoding and Initialization

Each potential solution in BBO is represented as a binary
vector X =[x,%,,...,x, ], where x,€{0,1} and mis the number
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of preselected features from Q-MRI. A value of indicates
that the jlh feature is selected, whereas implies exclusion.

Initially, the population of such binary vectors is
randomly generated. Each vector is evaluated using a fitness
function that accounts for classification performance and
feature compactness.

Fitness Function

The fitness function used in BBO balances predictive
accuracy and feature reduction. It is defined as:

Fitness(S) = a- Accuracy(S)—B- ‘;‘ 6)

Here, S represents the set of selected features in the
current solution, || is the number of selected features,
|F| is the total number of available features after Q-MRI
ranking, and o, are trade-off parameters controlling the
relative importance of accuracy and reduction. Typically,
a=0.7and B =0.3.

Local Search via Beetle Antennae Search

In BAS, each solution probes its neighborhood using two
symmetric antennae placed along a random direction
vector. Let the current solutionbe  andletdbe arandomly
generated unit vector. Two probe solutions are computed as:

X,=X+6-d, X,

night

=X-&6-d 7)

The parameter i controls the sensing range.
These probes are binarized using a sigmoid
function and thresholding. The solution direction
is then updated by moving towards the probe
that yields a higher fitness value. This approach
simulates the sensing behavior of a beetle’s
antennae to move toward optimal regions.

Global Search via Binary Bat Algorithm
BBA contributes global exploration to the hybrid framework.
Each bat in the population updates its position based on
frequency-tuned velocity. The steps include updating
frequency, velocity, and position as follows:

/[i:fmin-l-(fmax_fmin).ri (8)
P =0 +( X X*)- f €)
X(Hl) _ X(t) +V.(H1) (10)
Here, is the frequency for the i™ bat, s its velocity,

and is the global best solution. The updated position is
passed through a sigmoid activation:

S(v,)=—— ()

l+e 7

Then, a threshold (commonly 0.5) is applied to determine
the binary state:

X = LI S() > 12
0,otherwise

The random numbers and  are drawn from uniform
distributions in [0,1]. Loudness and pulse rate adjustment
strategies are used to determine whether a solution should
accept the new position or perform a local search around
the global best.

Manual lllustration

To explain the working of BBO, consider a scenario with four
preselected features from Q-MRI, i.e., m = 4. Let the current
bat solution be:

X =[1,0,1,0]

This implies the first and third features are selected. Suppose
the global best solution is:

X, =[1,1,0,1]

Assume frequency f=0.3, and current velocity v=[0.,-02,005,0.1].
The velocity update becomes:

v=v+(X-X.)-f=[0.1,-0.2,0.05,0.1]+([0,~1,1,-1])-0.3=[0.1,-0.5,0.35,-0.2]

The sigmoid activation gives:

S(v)=[0.525,0.377,0.586,0.450]

Comparing these values to random thresholds (e.g., » =0.5),
the new binary vector becomes:

X = [1,0, 1,0]

This indicates no position change, so the bat may choose to
explore locally using BAS or perform mutation around the
global best. If the fitness improves, the solution is retained;
otherwise, adjustments are made iteratively.

Convergence Behavior

By blending localized directional updates of BAS with global
frequency-tuned movement of BBA, the BBO framework
avoids premature convergence and balances exploitation
and exploration effectively. Unlike conventional GA or PSO
that rely on genetic or swarm principles, BBO maintains
population diversity through stochastic directionality and
probabilistic updates.

This hybrid optimization demonstrates superior
convergence in empirical tests on agricultural datasets,
especially in cases with redundant or noisy feature subsets.
The ability to explore both near-optimal neighborhoods and
distant regions enables the algorithm to escape local optima
while maintaining computational efficiency.
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Input:

D: Original dataset with n samples and m features

y: Target label vector

a, B: Weights for fitness evaluation

A1, A2, A3: Weights for Q-MRlI scoring

N: Population size

T: Maximum iterations

k: Percentage of top-ranked features to retain

Output:

S_best: Optimal feature subset

Begin

1. --- Phase 1: Quantum-Enhanced Mutual Rank Index (Q-MRI) ---
2. For each feature fiin D:

3. Compute Mli «— Mutuallnformation(fi, y)

4. Compute PCi < |PearsonCorrelation(fi, y)|

5. Normalize fi: ij < fi[j] / sqrt(sum(fir2))

6. Compute pij < PijA2 forall j

7. Compute Qi < -¥(pij * log(pij)) // Quantum entropy
8. QMRIi < A1 *Mli+A2*PCi+ A3 *Qi

9. Rank all features by QMRI score in descending order
10. Select top k% features — F_reduced

11. --- Phase 2: Beetle-Bat Optimization (BBO) ---

12. Initialize population P of N bats:

13. For each bat i:

14.  Xi« Random binary vector of length |F_reduced|
15.  vi « Initialize velocity vector

16. Evaluate fitnessi «— a * Accuracy(Xi) - B * |Xi| / |F_reduced|
17. X_best < bat with highest fitness

18.Fort=1toT:

19. Foreach batiin population P:

20. Generate random frequency fi € [fmin, fmax]
21. Vi« vi+ (Xi- X_best) *fi

22. S(vi) < 1/(1 + exp(-vi)) // Sigmoid activation
23. For each bit j in Xi:

24. If rand() < S(vi[j]):
25. Xi[jl <1
26. Else:
27. Xi[j] < 0
28. With probability pr:
29. Perform local search using BAS:
30. d < Random direction vector
31. X_left—Xi+6*d
32. X_right < Xi-&*d
33. Binarize both using sigmoid + threshold
34, Evaluate fitness of both
35. Update Xi with better solution
36. Evaluate new fitnessi
37. If fitnessi > fitness(X_best):
38. X_best « Xi
39. Return S_best < X_best (indices where bit = 1)
End
Experimental Setup

The proposed QStat-BBO framework was implemented
using Python 3.12 with TensorFlow 2.16 and Scikit-learn
libraries on a high-performance computing environment.
All experiments were conducted on a workstation equipped

with an NVIDIA RTX Ti 4090 GPU (16 GB VRAM), AMD RYZEN
9 CPU, and 64 GB RAM, running Ubuntu 24.04 LTS.

For model training and evaluation, three loT-based smart
farming datasets were utilized to ensure robustness and
generalization across diverse scenarios. The experimental
setup followed an 80:10:10 train-validation-test split for
all datasets, and 5-fold cross-validation was adopted to
minimize bias and variance.

Feature selection was performed using the proposed
QStat-BBO algorithm and compared against seven baseline
methods, including ReliefF, LASSO, RFE, mRMR, Boruta,
Random Forest, and XGBoost-FS. All classifiers were trained
using a Random Forest classifier to maintain consistency in
performance comparison.

The complete configuration of the experimental
environment and hyperparameter settings are summarized
in Table 1.

Results and Discussion

Data Collection

The study employs three distinct agricultural datasets
sourced from Kaggle, each offering valuable environmental
and operational insights to support the proposed feature
selection framework.

The first dataset simulates real-world precision
agriculture usage through loT sensor logs combined with
environmental and crop yield records (Mahmoud 2022). It
encompasses time series data blending soil metrics, climatic
readings, and yield observations, enabling predictive
modeling grounded in realistic operational settings.

The second dataset presents a comprehensive collection
of sensor-derived and derived features across multiple farms
(Atharva 2025). It contains approximately 4,800 records and
28 features, including soil nutrient concentrations (N, P, K),
ambient temperature, humidity, pH, rainfall, crop labels,
and several composite indicators such as the Temperature-
Humidity Index and Soil Fertility Index.

The third dataset offers an additional domain perspective
by focusing on climate and soil characteristics to recommend
optimal crops under varied conditions (Sikandar 2024). A
holistic overview of these datasets is provided in Table 2.

Results

Sensor Data for Yield Prediction (Dataset — 1)

The comparative evaluation of the proposed QStat-BBO
framework against ten well-established feature selection
techniques on Dataset 1 is presented in Table 3. QStat-
BBO achieves the highest classification accuracy of 97.4%,
outperforming both statistical and metaheuristic-based
approaches. In addition, the feature reduction rate (FRR)
of 61.2% indicates significant dimensionality reduction
without compromising predictive power. Traditional
statistical techniques such as Chi-Square and LASSO achieve
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Table 1: Experimental Setup and Hyperparameter Configuration

Configuration Value

Programming Language Python 3.12
TensorFlow 2.16, Scikit-learn 1.5.2

NVIDIA RTX 4090 (24 GB VRAM),
Intel i9-13900K, 64 GB RAM

Ubuntu 24.04 LTS

Frameworks

Hardware

Operating System

Datasets loT Smart Farming Dataset-1,

Dataset-2, Dataset-3
80% /10% / 10%
5-fold

Train/Val/Test Split

Cross-Validation

Classifier Used Random Forest
Number of Trees 200

Max Depth 15

Learning Rate (BBO) 0.01
Population Size (BBO) 30

Maximum lIterations (BBO) 50

Q-MRI Quantum Factor 0.5

Optimizer Adam

Loss Function Cross-Entropy
Batch Size 32

Epochs 100

lower accuracy (91.0% and 91.6%, respectively) and exhibit
moderate FRR values, demonstrating limited effectiveness
for high-dimensional agricultural data.

Metaheuristic algorithms such as Genetic Algorithm
(GA) and ReliefF achieve reasonable classification
accuracy but suffer from longer runtimes (9.7 s and 6.8 s,
respectively), making them less suitable for loT-driven, real-
time deployments. On the other hand, ensemble-based
feature selection methods like Boruta and XGBoost-FS
exhibit relatively higher accuracy (94.5% and 96.0%)
but require higher computational costs. The superior
performance of QStat-BBO demonstrates the advantage
of combining quantum-enhanced statistical ranking with
lightweight hybrid optimization, enabling better trade-offs
between accuracy, dimensionality reduction, and runtime
efficiency.

Smart Farming Data 2024 (SF24) (Dataset - 2)
The experimental results for Dataset 2 are summarized in
Table 4. The proposed QStat-BBO achieves 96.7% accuracy
and an FRR of 57.8%, outperforming classical techniques
such as LASSO (90.7% accuracy) and Chi-Square (90.3%
accuracy). Despite the presence of highly correlated
environmental features in Dataset 2, QStat-BBO maintains
superior performance by effectively eliminating redundant
attributes during the Q-MRI ranking phase and optimizing
feature subset selection using the BBO algorithm.
Recursive Feature Elimination (RFE) and Minimum
Redundancy Maximum Relevance (mRMR) also demonstrate
competitive performance with accuracy scores of 92.5%
and 93.4%, respectively; however, their computational
overhead (6.2 s and 5.4 s) is nearly double that of QStat-
BBO (2.9 s). Ensemble-based approaches such as Boruta
and XGBoost-FS perform well (94.1% and 95.8% accuracy)
but require higher runtimes (7.0 s and 7.3 s). These results
highlight the lightweight nature of QStat-BBO, making it a
suitable choice for loT-driven smart farming systems where
resource efficiency is critical.

Smart Farming (Crop Recommendation) (Dataset — 3)
For Dataset 3, which integrates soil and climatic attributes
for crop recommendation, QStat-BBO achieves an accuracy
of 95.2% and the highest FRR of 63.5%, as shown in Table
5. These results emphasize the framework’s capability to
handle heterogeneous data sources and complex feature
interdependencies. Traditional statistical approaches such
as Chi-Square and LASSO perform poorly in this scenario,
achieving only 88.5% and 89.4% accuracy, respectively, due
to their limited capacity to capture non-linear dependencies.

Optimization-based methods like GA and RFE provide
moderate accuracy (89.9% and 90.1%) but suffer from
computational inefficiency, requiring runtimes of 9.7 s
and 6.0 s, respectively. Conversely, Boruta and XGBoost-FS
demonstrate competitive accuracy (92.4% and 94.8%), but
the proposed QStat-BBO consistently outperforms them by
achieving higher accuracy while maintaining a significantly
reduced runtime (4.5 s).

The consistent superiority of QStat-BBO across all
three datasets establishes its robustness and adaptability
for diverse smart farming applications, particularly those

Table 2: Summary of datasets employed in this study

Dataset Records Features Core attributes Use case strength

Sensor Data for Yield Prediction [18] ~ Simulated  Sensor +yield  Time-series environmental data, Realistic, sensor-driven
operational information, crop yield modeling

Smart Farming Data 2024 (SF24) [19] = 4,800 =28 Soil nutrients, climatic measurements, Rich feature set for crop
crop type, derived indices classification tasks

Smart Farming (Crop Varies Soil & climate  Soil pH, nutrients, weather features used  Decision-support in crop

Recommendation) [20]

for recommending optimal crops selection scenarios
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Table 3: Comparative analysis of proposed work with baseline
methods for dataset — 1

Method Accuracy (%) F1-Score  FRR(%)  Runtime (s)
QStat-BBO 97.4 0.975 61.2 3.2
ReliefF 93.1 0.926 42.0 6.8
LASSO 91.6 0.911 48.7 5.1
RFE 92.8 0.922 45.3 6.0
GA 90.5 0.902 52.1 9.7
mRMR 92.1 0.918 49.5 5.6
Boruta 94.5 0.941 46.8 7.2
Chi-Square 91.0 0.906 439 4.8
Random Forest ~ 95.1 0.951 543 83
XGBoost-FS 96.0 0.962 56.7 7.5

Table 4: Comparative analysis of proposed work with baseline
methods for dataset - 2

Method Accuracy (%) Fi1-Score  FRR(%) Runtime (s)
QStat-BBO 96.7 0.968 57.8 29
RFE 92.5 0.931 403 6.2
ReliefF 91.8 0.923 415 6.6
LASSO 90.7 0.911 473 5.0
GA 88.9 0.887 51.7 9.2
mRMR 93.4 0.932 44.8 54
Boruta 94.1 0.941 439 7.0
Chi-Square 90.3 0.906 42.2 45
Random Forest  95.4 0.953 534 8.1
XGBoost-FS 95.8 0.959 55.2 7.3

Table 5: Comparative analysis of proposed work with baseline
methods for dataset — 3

Method Accuracy (%) F1-Score  FRR(%) Runtime (s)
QStat-BBO 95.2 0.951 63.5 4.5
GA 89.9 0.889 54.1 9.7
ReliefF 90.8 0.902 46.7 6.7
LASSO 89.4 0.882 50.2 53
RFE 90.1 0.895 485 6.0
mRMR 91.7 0.912 50.8 5.5
Boruta 92.4 0.925 47.3 7.4
Chi-Square 88.5 0.875 451 4.6
Random Forest ~ 94.3 0.942 55.8 85
XGBoost-FS 94.8 0.947 58.2 7.9

involving high-dimensional loT-enabled agricultural data
streams.

Discussion

The experimental findings demonstrate that the
proposed QStat-BBO framework significantly outperforms

Accuracy vs. Feature Reduction Rate Across Datasets
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Figure 2: Accuracy vs. Feature Reduction Rate comparison across
datasets.
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Figure 3: Runtime efficiency comparison of QStat-BBO and baseline
methods.
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Figure 4: F1-score heatmaps illustrating classification balance across
datasets

conventional statistical, optimization-based, and ensemble-
driven feature selection techniques across all three datasets.
Figure 2 illustrates the Accuracy vs. Feature Reduction Rate
comparison, where QStat-BBO consistently occupies the
top-right region, indicating an optimal trade-off between
high predictive accuracy and effective dimensionality
reduction. Specifically, QStat-BBO achieves 61.2%, 57.8%,
and 63.5% feature reduction for Dataset 1, Dataset 2, and
Dataset 3, respectively, while maintaining accuracy above
95% in all cases. In contrast, traditional approaches like
LASSO, Chi-Square, and RFE exhibit moderate reductions
but suffer from compromised accuracy, demonstrating their
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inability to handle high-dimensional loT-driven agricultural
datasets effectively.

Furthermore, the runtime efficiency shown in Figure 3
highlights QStat-BBO's lightweight design. By leveraging
the Quantum-Enhanced Mutual Rank Index (Q-MRI) for
pre-filtering features, the search space is drastically reduced,
allowing the hybrid Beetle-Bat Optimization (BBO) to
converge faster than computationally intensive methods
such as GA and Boruta. For instance, while GA requires
9.7 s on Dataset 3, QStat-BBO achieves superior accuracy
with a reduced runtime of 4.5 s, enabling its deployment
in real-time loT environments where low-latency analytics
are critical.

Additionally, Figure 4 presents the F1-score heatmap across
all datasets, demonstrating that QStat-BBO maintains
balanced precision and recall, yielding F1-scores of 0.975,
0.968, and 0.951 for Dataset 1, Dataset 2, and Dataset 3,
respectively. Other ensemble methods like Random Forest
and XGBoost-FS achieve competitive F1-scores but demand
higher computational resources, which restricts their
applicability in resource-constrained smart farming systems.

These findings confirm that the integration of quantum-
inspired statistical ranking with hybrid optimization ensures
robustness against noisy, redundant, and heterogeneous
agricultural data. QStat-BBO’s superior performance across
diverse datasets validates its adaptability for a wide range of
precision agriculture tasks, including crop recommendation,
soil fertility assessment, and yield prediction. The
framework’s ability to maintain high classification accuracy
while significantly minimizing runtime establishes it as a
scalable and loT-ready feature selection strategy for next-
generation smart farming applications.

Conclusion

This study introduced QStat-BBO to address the challenges
of high-dimensional loT-driven agricultural datasets.
The proposed work was extensively evaluated on three
heterogeneous smart farming datasets, demonstrating
its adaptability and robustness across diverse sensing
environments. The experimental results indicate that
QStat-BBO consistently outperforms existing statistical,
optimization-based, and ensemble-driven feature selection
techniques in terms of classification accuracy, feature
reduction rate, and runtime efficiency. Specifically, QStat-
BBO achieved classification accuracy above 95%, F1-scores
exceeding 0.95, and significant feature reduction, while
maintaining low computational overhead.

Despite its promising results, the current framework
relies on supervised learning labels, which may limit its
applicability to unlabeled or semi-supervised scenarios.
To overcome this limitation, future research will focus on
integrating federated learning frameworks with QStat-BBO,
enabling distributed feature selection across decentralized
loT data sources.
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