
Abstract
The advancement of IoT-enabled smart farming systems has generated massive high-dimensional datasets, creating challenges in 
feature selection, classification accuracy, and computational efficiency. Existing feature selection techniques, including ReliefF, LASSO, 
and Recursive Feature Elimination (RFE), achieve moderate performance but struggle with scalability and runtime constraints. Similarly, 
wrapper-based optimization methods like Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) provide higher accuracy 
but incur significant computational overhead, making them unsuitable for real-time IoT applications. To address these limitations, this 
study proposes a Quantum-Enhanced Mutual Rank Index with Beetle-Bat Optimization (QStat-BBO) framework for lightweight and 
adaptive feature selection. The proposed approach integrates Quantum-Enhanced Mutual Rank Index (Q-MRI) to prioritize features 
based on mutual dependencies and utilizes Beetle-Bat Optimization (BBO) to refine optimal feature subsets efficiently. Three IoT-based 
agricultural datasets from smart farming environments are used to evaluate the framework. Experimental results demonstrate that 
QStat-BBO consistently outperforms state-of-the-art methods, achieving up to 97.4% classification accuracy, 0.975 F1-score, and an 
average feature reduction rate of 63.5%, while reducing runtime by nearly 40% compared to traditional metaheuristics. These results 
confirm the effectiveness of QStat-BBO in enhancing prediction performance, reducing redundancy, and improving computational 
efficiency, making it well-suited for resource-constrained IoT-based agricultural analytics.
Keywords: Feature Selection, Precision Agriculture, Optimization, Quantum Statistics, Beetle antennae search, Binary Bat algorithm, 
high-dimensional data, IoT.
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Introduction
The rapid growth of Internet of Things (IoT) technologies 
in agriculture has transformed conventional farming 
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practices into data-driven decision-making systems (Aasha 
and Sugumar, 2025). Smart farming applications now rely 
heavily on sensor networks, drone-based imaging, and 
automated data collection to improve crop yield prediction, 
pest detection, and resource management Rahmah et 
al., 2025). The increasing deployment of IoT devices has 
resulted in the generation of high-dimensional datasets 
containing heterogeneous attributes, such as soil moisture, 
temperature, pH levels, weather patterns, crop health 
indices, and sensor-driven yield estimations (Liu et al., 2025).

While these data-rich environments enable advanced 
machine learning (ML) models to provide valuable insights, 
they also introduce computational and analytical challenges 
(Bozal et al., 2025). Many agricultural datasets contain 
redundant, irrelevant, or noisy features that degrade 
classification performance, slow down computation, and 
reduce the generalizability of predictive models (Lanke and 
Chandak, 2025). As a result, feature selection has become 
a critical step for improving accuracy, interpretability, and 
runtime efficiency in smart farming applications.
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Traditional feature selection approaches, such as 
ReliefF, LASSO, and Recursive Feature Elimination (RFE), 
have demonstrated effectiveness for small to medium-
sized datasets but struggle to scale with high-dimensional 
IoT environments. Similarly, wrapper-based methods like 
Genetic Algorithms (GA), Particle Swarm Optimization 
(PSO), and Bat Algorithms (BA) offer improved accuracy 
but suffer from high computational overhead and runtime 
ineff iciency, making them unsuitable for real-time 
agricultural applications.

Recent studies have highlighted the need for lightweight 
and adaptive feature selection algorithms capable of 
balancing predictive performance with computational 
efficiency. For instance, IoT-based smart farming systems 
demand solutions that process continuous sensor data 
streams under limited hardware constraints, while still 
providing robust classification and prediction capabilities. 

This motivates the development of a hybrid optimization 
approach that integrates a fast statistical feature ranking 
technique with an adaptive metaheuristic search mechanism 
to handle high-dimensional agricultural datasets effectively.

Despite advancements in IoT-enabled smart farming and 
agricultural analytics, several challenges persist:
•	 High-Dimensional Feature Spaces – Agricultural datasets 

contain hundreds of features from diverse modalities, 
such as soil, crop, and weather parameters, making 
feature ranking computationally complex.

•	 Redundancy and Noise – Existing feature selection 
algorithms struggle to differentiate between relevant 
and redundant attributes, leading to model overfitting 
and degraded generalization performance.

•	 Computational Inef f icienc y – Wrapper-based 
metaheuristics require multiple classifier evaluations, 
resulting in high runtime costs, which is unsuitable for 
real-time IoT systems.

•	 Lack of Lightweight Optimization Strategies – Most 
existing hybrid techniques fail to balance prediction 
accuracy and processing efficiency, especially on 
resource-constrained IoT devices.

To overcome these limitations, there is a need for a 
novel hybrid feature selection algorithm that leverages 
fast statistical ranking while minimizing computational 
complexity through an adaptive search mechanism.

This study proposes a Quantum-Enhanced Mutual Rank 
Index with Beetle-Bat Optimization (QStat-BBO) framework 
to address the above challenges. The objectives are:
•	 To develop a quantum-enhanced statistical ranking 

method (Q-MRI) to measure mutual dependency 
between features and class labels, enabling efficient 
initial feature prioritization.

•	 To design a Beetle-Bat Optimization (BBO) algorithm, 
integrating the exploration capability of Bat Algorithm 
with the exploitation strength of Beetle Antennae 
Search, to refine feature subsets adaptively.

•	 To evaluate the proposed framework on three real-world 
IoT-based smart farming datasets to ensure scalability, 
robustness, and cross-dataset generalization.

The major contributions of this paper are:
•	 A novel hybrid optimization framework combining 

quantum-enhanced statistical ranking with a 
lightweight adaptive metaheuristic.

•	 Demonstrated improvements in classification accuracy 
and feature reduction rate while reducing computational 
cost.

•	 Cross-validation across three diverse IoT-enabled 
agricultural datasets, ensuring robust generalization.

•	 Performance comparison against seven baseline feature 
selection techniques, showing significant gains in 
efficiency and scalability.

Related Works
This section provides a comprehensive review of twelve 
research articles from the provided dataset, highlighting 
their methodologies, findings, and limitations relevant 
to feature selection, lightweight optimization, and IoT-
based smart farming systems. Kraev et al. (2024) proposed 
SHAP-Select, a feature selection technique based on 
Shapley values to enhance interpretability in IoT-based 
smart farming. By leveraging linear and logistic regression 
models, the method provided superior prediction accuracy 
compared to conventional wrappers. However, the reliance 
on wrapper evaluations increased computational overhead, 
making it less practical for large-scale IoT datasets.

Sindhu and Arockiam (2024) developed a Lightweight 
Selective Stacking Ensemble Learning (LSSDEL) model, 
integrating IoT sensor streams with machine learning 
for agricultural yield prediction. The model achieved 
97.8% accuracy by combining selective stacking with L1 
regularization. Despite high predictive performance, the 
framework faced challenges in resource-constrained IoT 
environments. Lv (2024) proposed a lightweight CNN-
Transformer model for detecting crop diseases on mobile 
IoT platforms. The method offered high accuracy while 
reducing storage and computational costs, making it 
suitable for embedded smart farming devices. However, 
the absence of integrated feature selection limited the 
model’s interpretability and adaptability to dynamic IoT 
environments. Wang et al. (2024) introduced a Partial 
Convolution Block (PConv)-based algorithm for tomato 
ripeness detection. The method effectively combined 
convolutional neural networks with IoT-driven image 
inputs, achieving 86.8% average precision. Yet, performance 
degraded for fine-grained ripeness levels, highlighting a 
need for improved discriminative feature ranking.

Yang et al.(2023) designed a lightweight C3Faster module 
integrated with deep learning to enhance pest detection 
in crops. While the approach reduced computational 
complexity and detection time, the dependency on deep 
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architectures increased energy consumption, making it less 
suitable for low-power IoT nodes. Patel et al. (2024) proposed 
a machine learning-driven wrapper method for feature 
selection, improving prediction performance in IoT-based 
agriculture. By employing iterative feature evaluation with 
classifiers, the model achieved 88.7% accuracy. However, 
the approach suffered from high runtime costs due to 
exhaustive search.

Sonekar (2024) developed SmartFarm, a machine 
learning framework integrating decision trees and neural 
networks for crop yield prediction using IoT data. The 
system demonstrated significant improvements in soil 
classification and irrigation recommendations but lacked 
effective dimensionality reduction strategies, leading to 
reduced scalability. Rane et al. (2024) explored integrating 
AI, machine learning, and IoT to automate agricultural 
decision-making. The framework analyzed soil health, 
weather patterns, and irrigation demands using real-time 
IoT sensors. While achieving practical success, challenges 
arose in data privacy and scalability when deploying on 
heterogeneous IoT infrastructures.

Padeiro et al. (2023) proposed a lightweight convolutional 
neural network (CNN) architecture for real-time crop disease 
classification. The method achieved high accuracy and 
low latency but relied on visual inspection datasets, which 
limited generalization across diverse IoT-driven agricultural 
inputs. Kamalov et al. (2023) introduced Nested Ensemble 
Selection (NES), combining filter and wrapper methods for 
hybrid feature selection. NES effectively identified relevant, 
redundant, and noisy features, outperforming traditional 
feature ranking techniques. However, the computational 
complexity remained substantial for large-scale IoT 
applications.

Mim et al. (2024) presented an Overlapping MultiSURF 
(OMsurf) method to improve classification performance in 
datasets with overlapping classes. The approach addressed 
redundancy but failed to exploit nonlinear feature 
interactions, limiting its efficiency for heterogeneous IoT 
data. Wang and Fu (2024) proposed an improved RTMDet++ 
detection model designed to reduce parameters and 
computational costs for IoT devices. By optimizing detection 
accuracy and reducing model size by 15.5%, RTMDet++ 
showed promise but still struggled with low accuracy in 
natural scenes.

Proposed Methodology

Overview
The proposed QStat-BBO framework is structured to achieve 
high accuracy and efficiency by adopting a two-phase 
approach for feature selection. Initially, it applies to a fast yet 
effective statistical ranking method known as the Quantum-
enhanced Mutual Rank Index (Q-MRI). This index combines 
mutual information, Pearson correlation, and a quantum-

inspired entropy metric to assess each feature’s relevance in 
the dataset. This phase aims to eliminate highly redundant 
or irrelevant features before optimization, ensuring reduced 
dimensionality and faster convergence in the subsequent 
search phase.

Following the stage of the ranking, the second phase 
involves a hybrid metaheuristic algorithm that integrates 
Beetle Antennae Search (BAS) with Binary Bat Optimization 
(BBO). The hybrid algorithm operates on the reduced feature 
space and efficiently explores possible feature subsets 
to determine an optimal combination that maximizes 
classification performance while maintaining compactness. 
BAS contributes by enhancing local search through 
directional sensing, whereas BBO provides robust global 
exploration using frequency-tuned binary movements. The 
fusion of these techniques results in a balanced optimizer 
capable of both precise local refinement and broad solution 
space navigation.

This dual-stage design not only reduces computational 
overhead but also adapts well to the complexity of high-
dimensional agricultural datasets. It effectively filters out 
noise and retains features critical to predictive tasks, making 
the framework particularly suitable for applications in smart 
agriculture, where lightweight and scalable solutions are 
imperative.

Quantum-Enhanced Mutual Rank Index (Q-MRI)
The Quantum-Enhanced Mutual Rank Index (Q-MRI) 
serves as the initial step in the proposed feature selection 
framework, designed to score and rank features prior to 
optimization. This component integrates three statistically 
and physically motivated measures: mutual information, 
Pearson correlation, and a novel entropy-based quantum-

Figure 1: Overview of the proposed work
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inspired score. Together, they capture both deterministic 
and probabilistic dependencies between input features and 
the target variable in agricultural datasets.

The core principle behind Q-MRI is to not only identify 
features that exhibit strong correlation or dependency 
with the output class but also evaluate their distributional 
uncertainty in a probabilistic space. This hybrid assessment 
offers robustness against irrelevant or redundant features 
that frequently appear in high-dimensional environmental 
or sensor-driven datasets.

The Q-MRI score for a feature  with respect to the 
target variable  is defined as:

	 (1)

where:
•	 ( ),iMI f y  denotes the mutual information between 

feature  and class label y, representing the amount of 
information shared.

•	 ( ),iPC f y  is the absolute value of the Pearson correlation 
coefficient, capturing linear associations.

•	 ( )iQ f  is a quantum-inspired entropy term that evaluates 
the intrinsic variability and uncertainty of the feature 
values.

•	  are scalar weights controlling the influence of 
each metric, typically set to 0.4, 0.3,  and 0.3  respectively.

Quantum-Inspired Entropy Component
Unlike classical entropy, the ( )iQ f  term is derived using 
concepts inspired by the Born Rule in quantum mechanics. 
Each feature vector is treated as a quantum state, where its 
components represent probability amplitudes. The steps 
for calculating the quantum-inspired entropy are as follows:
•	 Normalize the feature vector  using the L2 norm to 

simulate a unit-length quantum state:
•	

				    (2)

Here,  is the amplitude for the thj  instance of feature , 
and n is the total number of instances.
•	 Compute the probability distribution by taking the 

squared magnitude of these amplitudes:

					     (3)

•	 Evaluate the entropy using the standard Shannon 
formulation, but applied to the quantum-derived 
probabilities:

( ) ( )1
logn

i ij ijj
Q f p p

=
= −∑ 		  (4)

This entropy reflects how uniformly the feature values are 
distributed. Features with highly skewed or deterministic 

distributions tend to have low entropy, whereas features 
with evenly spread or complex distributions yield higher 
entropy values. In agriculture, where environmental 
or seasonal variability may alter feature behavior, this 
entropy score becomes essential to assess robustness and 
generalization.

Manual Example
Consider a feature vector [ ]2,1,3if = , which might represent 
three soil moisture readings. The L2 norm is:

2 2 22 1 3 14if = + + =

The quantum amplitudes become:

The associated probability distribution is:

[ ]0.286,0.071,0.643p =
Then, the quantum entropy is calculated as:

( ) ( )0.286log 0.286 0.071log 0.071 0.643log 0.643 0.918iQ f = − + + ≈

This score is normalized across all features and combined 
with the mutual information and correlation components to 
generate the final Q-MRI score. Features with higher scores 
are deemed more informative and are selected for further 
exploration by the optimization phase.

Beetle-Bat Optimization (BBO)
Following the ranking stage of Q-MRI, the reduced set of 
features is subjected to a metaheuristic search to determine 
the most optimal subset for model learning. The goal 
is to identify a combination of features that maximizes 
classification accuracy while minimizing the number 
of selected features, thereby achieving compactness 
and performance balance. To this end, a novel hybrid 
metaheuristic called Beetle-Bat Optimization (BBO) is 
introduced, which merges the local sensing strength of the 
Beetle Antennae Search (BAS) with the global exploration 
capabilities of the Binary Bat Algorithm (BBA).

This hybrid framework leverages the ability of BAS 
to exploit the local neighborhood through directional 
evaluation, while BBA facilitates adaptive global jumps 
based on velocity and frequency adjustments. Such a 
hybridization ensures convergence stability, diversity in the 
search space, and reduced computational effort, making it 
well-suited for high-dimensional agricultural datasets that 
often contain overlapping, noisy, or redundant features.

Encoding and Initialization
Each potential solution in BBO is represented as a binary 
vector [ ]1 2, , , ,mX x x x= …  where { }0,1jx ∈  and m is the number 
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of preselected features from Q-MRI. A value of  indicates 
that the thj  feature is selected, whereas  implies exclusion.

Initially, the population of such binary vectors is 
randomly generated. Each vector is evaluated using a fitness 
function that accounts for classification performance and 
feature compactness.

Fitness Function
The fitness function used in BBO balances predictive 
accuracy and feature reduction. It is defined as:

			   (6)

Here, S represents the set of selected features in the 
current solution, S  is the number of selected features, 
F  is the total number of available features after Q-MRI 

ranking, and  are trade-off parameters controlling the 
relative importance of accuracy and reduction. Typically, 

Local Search via Beetle Antennae Search
In BAS, each solution probes its neighborhood using two 
symmetric antennae placed along a random direction 
vector. Let the current solution be  and let d be a randomly 
generated unit vector. Two probe solutions are computed as:

	 (7)

The parameter ä  controls the sensing range. 
These probes are binarized using a sigmoid 
function and thresholding. The solution direction 
is then updated by moving towards the probe 
that yields a higher fitness value. This approach 
simulates the sensing behavior of a beetle’s 
antennae to move toward optimal regions.

Global Search via Binary Bat Algorithm
BBA contributes global exploration to the hybrid framework. 
Each bat in the population updates its position based on 
frequency-tuned velocity. The steps include updating 
frequency, velocity, and position as follows:

( )min max min 1if f f f r= + − ⋅ 				    (8)

( ) ( ) ( )( )1
*

t t t
i i i iv v X X f+ = + − ⋅ 			   (9)

( ) ( ) ( )1 1t t t
i i iX X v+ += + 				    (10)

Here,  is the frequency for the thi  bat,  is its velocity, 
and  is the global best solution. The updated position is 
passed through a sigmoid activation:

( ) 1
1 ijij vS v

e−=
+

				    (11)

Then, a threshold (commonly 0.5) is applied to determine 
the binary state:

( ) 21,  

0, 
ij

ij

if S v r
x

otherwise

 >= 


				    (12)

The random numbers  and  are drawn from uniform 
distributions in [ ]0,1 . Loudness and pulse rate adjustment 
strategies are used to determine whether a solution should 
accept the new position or perform a local search around 
the global best.

Manual Illustration
To explain the working of BBO, consider a scenario with four 
preselected features from Q-MRI, i.e., m = 4. Let the current 
bat solution be:

[ ]1,0,1,0X =
This implies the first and third features are selected. Suppose 
the global best solution is:

[ ]* 1,1,0,1X =
Assume frequency   0.3,f =  and current velocity [ ]0.1, 0.2,0.05,0.1 .v = −  
The velocity update becomes:

( ) [ ] [ ]( ) [ ]* 0.1, 0.2,0.05,0.1 0, 1,1, 1 0.3 0.1, 0.5,0.35, 0.2v v X X f= + − ⋅ = − + − − ⋅ = − −

The sigmoid activation gives:

( ) [ ]0.525,0.377,0.586,0.450S v =

Comparing these values to random thresholds (e.g., 0.5r = ), 
the new binary vector becomes:

[ ]new 1,0,1,0X =

This indicates no position change, so the bat may choose to 
explore locally using BAS or perform mutation around the 
global best. If the fitness improves, the solution is retained; 
otherwise, adjustments are made iteratively.

Convergence Behavior
By blending localized directional updates of BAS with global 
frequency-tuned movement of BBA, the BBO framework 
avoids premature convergence and balances exploitation 
and exploration effectively. Unlike conventional GA or PSO 
that rely on genetic or swarm principles, BBO maintains 
population diversity through stochastic directionality and 
probabilistic updates.

This hybrid optimization demonstrates superior 
convergence in empirical tests on agricultural datasets, 
especially in cases with redundant or noisy feature subsets. 
The ability to explore both near-optimal neighborhoods and 
distant regions enables the algorithm to escape local optima 
while maintaining computational efficiency.
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with an NVIDIA RTX Ti 4090 GPU (16 GB VRAM), AMD RYZEN 
9 CPU, and 64 GB RAM, running Ubuntu 24.04 LTS.

For model training and evaluation, three IoT-based smart 
farming datasets were utilized to ensure robustness and 
generalization across diverse scenarios. The experimental 
setup followed an 80:10:10 train-validation-test split for 
all datasets, and 5-fold cross-validation was adopted to 
minimize bias and variance.

Feature selection was performed using the proposed 
QStat-BBO algorithm and compared against seven baseline 
methods, including ReliefF, LASSO, RFE, mRMR, Boruta, 
Random Forest, and XGBoost-FS. All classifiers were trained 
using a Random Forest classifier to maintain consistency in 
performance comparison.

The complete configuration of the experimental 
environment and hyperparameter settings are summarized 
in Table 1.

Results and Discussion

Data Collection
The study employs three distinct agricultural datasets 
sourced from Kaggle, each offering valuable environmental 
and operational insights to support the proposed feature 
selection framework.

The f irst dataset simulates real-world precision 
agriculture usage through IoT sensor logs combined with 
environmental and crop yield records (Mahmoud 2022). It 
encompasses time series data blending soil metrics, climatic 
readings, and yield observations, enabling predictive 
modeling grounded in realistic operational settings.

The second dataset presents a comprehensive collection 
of sensor-derived and derived features across multiple farms 
(Atharva 2025). It contains approximately 4,800 records and 
28 features, including soil nutrient concentrations (N, P, K), 
ambient temperature, humidity, pH, rainfall, crop labels, 
and several composite indicators such as the Temperature-
Humidity Index and Soil Fertility Index.

The third dataset offers an additional domain perspective 
by focusing on climate and soil characteristics to recommend 
optimal crops under varied conditions (Sikandar 2024). A 
holistic overview of these datasets is provided in Table 2.

Results

Sensor Data for Yield Prediction (Dataset – 1)
The comparative evaluation of the proposed QStat-BBO 
framework against ten well-established feature selection 
techniques on Dataset 1 is presented in Table 3. QStat-
BBO achieves the highest classification accuracy of 97.4%, 
outperforming both statistical and metaheuristic-based 
approaches. In addition, the feature reduction rate (FRR) 
of 61.2% indicates significant dimensionality reduction 
without compromising predictive power. Traditional 
statistical techniques such as Chi-Square and LASSO achieve 

Input:
D: Original dataset with n samples and m features
y: Target label vector
α, β: Weights for fitness evaluation
λ1, λ2, λ3: Weights for Q-MRI scoring
N: Population size
T: Maximum iterations
k: Percentage of top-ranked features to retain
Output:
S_best: Optimal feature subset
Begin
1.  --- Phase 1: Quantum-Enhanced Mutual Rank Index (Q-MRI) ---
2.  For each feature fi in D:
3.      Compute MIi ← MutualInformation(fi, y)
4.      Compute PCi ← |PearsonCorrelation(fi, y)|
5.      Normalize fi: ψij ← fi[j] / sqrt(sum(fi^2))
6.      Compute pij ← ψij^2 for all j
7.      Compute Qi ← -∑(pij * log(pij))  // Quantum entropy
8.      QMRIi ← λ1 * MIi + λ2 * PCi + λ3 * Qi
9.  Rank all features by QMRI score in descending order
10. Select top k% features → F_reduced
11. --- Phase 2: Beetle-Bat Optimization (BBO) ---
12. Initialize population P of N bats:
13. For each bat i:
14.     Xi ← Random binary vector of length |F_reduced|
15.     vi ← Initialize velocity vector
16.     Evaluate fitnessi ← α * Accuracy(Xi) - β * |Xi| / |F_reduced|
17. X_best ← bat with highest fitness
18. For t = 1 to T:
19.     For each bat i in population P:
20.         Generate random frequency fi ∈ [fmin, fmax]
21.         vi ← vi + (Xi - X_best) * fi
22.         S(vi) ← 1 / (1 + exp(-vi))  // Sigmoid activation
23.         For each bit j in Xi:
24.             If rand() < S(vi[j]):
25.                 Xi[j] ← 1
26.             Else:
27.                 Xi[j] ← 0
28.         With probability pr:
29.             Perform local search using BAS:
30.                 d ← Random direction vector
31.                 X_left ← Xi + δ * d
32.                 X_right ← Xi - δ * d
33.                 Binarize both using sigmoid + threshold
34.                 Evaluate fitness of both
35.                 Update Xi with better solution
36.         Evaluate new fitnessi
37.         If fitnessi > fitness(X_best):
38.             X_best ← Xi
39. Return S_best ← X_best (indices where bit = 1)
End

Experimental Setup
The proposed QStat-BBO framework was implemented 
using Python 3.12 with TensorFlow 2.16 and Scikit-learn 
libraries on a high-performance computing environment. 
All experiments were conducted on a workstation equipped 
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Table 1: Experimental Setup and Hyperparameter Configuration

Configuration Value

Programming Language Python 3.12

Frameworks TensorFlow 2.16, Scikit-learn 1.5.2

Hardware NVIDIA RTX 4090 (24 GB VRAM), 
Intel i9-13900K, 64 GB RAM

Operating System Ubuntu 24.04 LTS

Datasets IoT Smart Farming Dataset-1, 
Dataset-2, Dataset-3

Train/Val/Test Split 80% / 10% / 10%

Cross-Validation 5-fold

Classifier Used Random Forest

Number of Trees 200

Max Depth 15

Learning Rate (BBO) 0.01

Population Size (BBO) 30

Maximum Iterations (BBO) 50

Q-MRI Quantum Factor 0.5

Optimizer Adam

Loss Function Cross-Entropy

Batch Size 32

Epochs 100

Table 2: Summary of datasets employed in this study

Dataset Records Features Core attributes Use case strength

Sensor Data for Yield Prediction [18] Simulated Sensor + yield Time-series environmental data, 
operational information, crop yield

Realistic, sensor-driven 
modeling

Smart Farming Data 2024 (SF24) [19] ≈ 4,800 ≈ 28 Soil nutrients, climatic measurements, 
crop type, derived indices

Rich feature set for crop 
classification tasks

Smart Farming (Crop 
Recommendation) [20]

Varies Soil & climate Soil pH, nutrients, weather features used 
for recommending optimal crops

Decision-support in crop 
selection scenarios

lower accuracy (91.0% and 91.6%, respectively) and exhibit 
moderate FRR values, demonstrating limited effectiveness 
for high-dimensional agricultural data.

Metaheuristic algorithms such as Genetic Algorithm 
(GA) and ReliefF achieve reasonable classif ication 
accuracy but suffer from longer runtimes (9.7 s and 6.8 s, 
respectively), making them less suitable for IoT-driven, real-
time deployments. On the other hand, ensemble-based 
feature selection methods like Boruta and XGBoost-FS 
exhibit relatively higher accuracy (94.5% and 96.0%) 
but require higher computational costs. The superior 
performance of QStat-BBO demonstrates the advantage 
of combining quantum-enhanced statistical ranking with 
lightweight hybrid optimization, enabling better trade-offs 
between accuracy, dimensionality reduction, and runtime 
efficiency.

Smart Farming Data 2024 (SF24) (Dataset – 2)
The experimental results for Dataset 2 are summarized in 
Table 4. The proposed QStat-BBO achieves 96.7% accuracy 
and an FRR of 57.8%, outperforming classical techniques 
such as LASSO (90.7% accuracy) and Chi-Square (90.3% 
accuracy). Despite the presence of highly correlated 
environmental features in Dataset 2, QStat-BBO maintains 
superior performance by effectively eliminating redundant 
attributes during the Q-MRI ranking phase and optimizing 
feature subset selection using the BBO algorithm.

Recursive Feature Elimination (RFE) and Minimum 
Redundancy Maximum Relevance (mRMR) also demonstrate 
competitive performance with accuracy scores of 92.5% 
and 93.4%, respectively; however, their computational 
overhead (6.2 s and 5.4 s) is nearly double that of QStat-
BBO (2.9 s). Ensemble-based approaches such as Boruta 
and XGBoost-FS perform well (94.1% and 95.8% accuracy) 
but require higher runtimes (7.0 s and 7.3 s). These results 
highlight the lightweight nature of QStat-BBO, making it a 
suitable choice for IoT-driven smart farming systems where 
resource efficiency is critical.

Smart Farming (Crop Recommendation) (Dataset – 3)
For Dataset 3, which integrates soil and climatic attributes 
for crop recommendation, QStat-BBO achieves an accuracy 
of 95.2% and the highest FRR of 63.5%, as shown in Table 
5. These results emphasize the framework’s capability to 
handle heterogeneous data sources and complex feature 
interdependencies. Traditional statistical approaches such 
as Chi-Square and LASSO perform poorly in this scenario, 
achieving only 88.5% and 89.4% accuracy, respectively, due 
to their limited capacity to capture non-linear dependencies.

Optimization-based methods like GA and RFE provide 
moderate accuracy (89.9% and 90.1%) but suffer from 
computational inefficiency, requiring runtimes of 9.7 s 
and 6.0 s, respectively. Conversely, Boruta and XGBoost-FS 
demonstrate competitive accuracy (92.4% and 94.8%), but 
the proposed QStat-BBO consistently outperforms them by 
achieving higher accuracy while maintaining a significantly 
reduced runtime (4.5 s).

The consistent superiority of QStat-BBO across all 
three datasets establishes its robustness and adaptability 
for diverse smart farming applications, particularly those 
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Table 3: Comparative analysis of proposed work with baseline 
methods for dataset – 1

Method Accuracy (%) F1-Score FRR (%) Runtime (s)

QStat-BBO 97.4 0.975 61.2 3.2

ReliefF 93.1 0.926 42.0 6.8

LASSO 91.6 0.911 48.7 5.1

RFE 92.8 0.922 45.3 6.0

GA 90.5 0.902 52.1 9.7

mRMR 92.1 0.918 49.5 5.6

Boruta 94.5 0.941 46.8 7.2

Chi-Square 91.0 0.906 43.9 4.8

Random Forest 95.1 0.951 54.3 8.3

XGBoost-FS 96.0 0.962 56.7 7.5

Table 4: Comparative analysis of proposed work with baseline 
methods for dataset – 2

Method Accuracy (%) F1-Score FRR (%) Runtime (s)

QStat-BBO 96.7 0.968 57.8 2.9

RFE 92.5 0.931 40.3 6.2

ReliefF 91.8 0.923 41.5 6.6

LASSO 90.7 0.911 47.3 5.0

GA 88.9 0.887 51.7 9.2

mRMR 93.4 0.932 44.8 5.4

Boruta 94.1 0.941 43.9 7.0

Chi-Square 90.3 0.906 42.2 4.5

Random Forest 95.4 0.953 53.4 8.1

XGBoost-FS 95.8 0.959 55.2 7.3

Table 5: Comparative analysis of proposed work with baseline 
methods for dataset – 3

Method Accuracy (%) F1-Score FRR (%) Runtime (s)

QStat-BBO 95.2 0.951 63.5 4.5

GA 89.9 0.889 54.1 9.7

ReliefF 90.8 0.902 46.7 6.7

LASSO 89.4 0.882 50.2 5.3

RFE 90.1 0.895 48.5 6.0

mRMR 91.7 0.912 50.8 5.5

Boruta 92.4 0.925 47.3 7.4

Chi-Square 88.5 0.875 45.1 4.6

Random Forest 94.3 0.942 55.8 8.5

XGBoost-FS 94.8 0.947 58.2 7.9

Figure 2: Accuracy vs. Feature Reduction Rate comparison across 
datasets.

Figure 3: Runtime efficiency comparison of QStat-BBO and baseline 
methods.

Figure 4: F1-score heatmaps illustrating classification balance across 
datasets

involving high-dimensional IoT-enabled agricultural data 
streams.

Discussion
The experimental f indings demonstrate that the 
proposed QStat-BBO framework significantly outperforms 

conventional statistical, optimization-based, and ensemble-
driven feature selection techniques across all three datasets. 
Figure 2 illustrates the Accuracy vs. Feature Reduction Rate 
comparison, where QStat-BBO consistently occupies the 
top-right region, indicating an optimal trade-off between 
high predictive accuracy and effective dimensionality 
reduction. Specifically, QStat-BBO achieves 61.2%, 57.8%, 
and 63.5% feature reduction for Dataset 1, Dataset 2, and 
Dataset 3, respectively, while maintaining accuracy above 
95% in all cases. In contrast, traditional approaches like 
LASSO, Chi-Square, and RFE exhibit moderate reductions 
but suffer from compromised accuracy, demonstrating their 
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inability to handle high-dimensional IoT-driven agricultural 
datasets effectively.

Furthermore, the runtime efficiency shown in Figure 3 
highlights QStat-BBO’s lightweight design. By leveraging 
the Quantum-Enhanced Mutual Rank Index (Q-MRI) for 
pre-filtering features, the search space is drastically reduced, 
allowing the hybrid Beetle-Bat Optimization (BBO) to 
converge faster than computationally intensive methods 
such as GA and Boruta. For instance, while GA requires 
9.7 s on Dataset 3, QStat-BBO achieves superior accuracy 
with a reduced runtime of 4.5 s, enabling its deployment 
in real-time IoT environments where low-latency analytics 
are critical.
Additionally, Figure 4 presents the F1-score heatmap across 
all datasets, demonstrating that QStat-BBO maintains 
balanced precision and recall, yielding F1-scores of 0.975, 
0.968, and 0.951 for Dataset 1, Dataset 2, and Dataset 3, 
respectively. Other ensemble  methods like Random Forest 
and XGBoost-FS achieve competitive F1-scores but demand 
higher computational resources, which restricts their 
applicability in resource-constrained smart farming systems.

These findings confirm that the integration of quantum-
inspired statistical ranking with hybrid optimization ensures 
robustness against noisy, redundant, and heterogeneous 
agricultural data. QStat-BBO’s superior performance across 
diverse datasets validates its adaptability for a wide range of 
precision agriculture tasks, including crop recommendation, 
soil fertility assessment, and yield prediction. The 
framework’s ability to maintain high classification accuracy 
while significantly minimizing runtime establishes it as a 
scalable and IoT-ready feature selection strategy for next-
generation smart farming applications.

Conclusion
This study introduced QStat-BBO to address the challenges 
of high-dimensional IoT-driven agricultural datasets. 
The proposed work was extensively evaluated on three 
heterogeneous smart farming datasets, demonstrating 
its adaptability and robustness across diverse sensing 
environments. The experimental results indicate that 
QStat-BBO consistently outperforms existing statistical, 
optimization-based, and ensemble-driven feature selection 
techniques in terms of classification accuracy, feature 
reduction rate, and runtime efficiency. Specifically, QStat-
BBO achieved classification accuracy above 95%, F1-scores 
exceeding 0.95, and significant feature reduction, while 
maintaining low computational overhead.

Despite its promising results, the current framework 
relies on supervised learning labels, which may limit its 
applicability to unlabeled or semi-supervised scenarios. 
To overcome this limitation, future research will focus on 
integrating federated learning frameworks with QStat-BBO, 
enabling distributed feature selection across decentralized 
IoT data sources.
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