Lightweight Feature Selection Method using Quantum Statistical Ranking and Hybrid Beetle-Bat Optimization for Smart Farming
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.9.04Keywords:
Feature selection, IoT, precision agriculture, optimization, quantum statistics, beetle antennae search, binary bat algorithm, high-dimensional dataDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The advancement of IoT-enabled smart farming systems has generated massive high-dimensional datasets, creating challenges in feature selection, classification accuracy, and computational efficiency. Existing feature selection techniques, including ReliefF, LASSO, and Recursive Feature Elimination (RFE), achieve moderate performance but struggle with scalability and runtime constraints. Similarly, wrapper-based optimization methods like Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) provide higher accuracy but incur significant computational overhead, making them unsuitable for real-time IoT applications. To address these limitations, this study proposes a Quantum-Enhanced Mutual Rank Index with Beetle-Bat Optimization (QStat-BBO) framework for lightweight and adaptive feature selection. The proposed approach integrates Quantum-Enhanced Mutual Rank Index (Q-MRI) to prioritize features based on mutual dependencies and utilizes Beetle-Bat Optimization (BBO) to refine optimal feature subsets efficiently. Three IoT-based agricultural datasets from smart farming environments are used to evaluate the framework. Experimental results demonstrate that QStat-BBO consistently outperforms state-of-the-art methods, achieving up to 97.4% classification accuracy, 0.975 F1-score, and an average feature reduction rate of 63.5%, while reducing runtime by nearly 40% compared to traditional metaheuristics. These results confirm the effectiveness of QStat-BBO in enhancing prediction performance, reducing redundancy, and improving computational efficiency, making it well-suited for resource-constrained IoT-based agricultural analytics.Abstract
How to Cite
Downloads
Similar Articles
- Sahaya Jenitha A, Sinthu J. Prakash, A general stochastic model to handle deduplication challenges using hidden Markov model in big data analytics , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- V Vijayaraj, M. Balamurugan, Monisha Oberai, Machine learning approaches to identify the data types in big data environment: An overview , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sabeerath K, Manikandasaran S. Sundaram, BTEDD: Block-level tokens for efficient data deduplication in public cloud infrastructures , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Nithya R, Kokilavani T, Joseph Charles P, Multi-objective nature inspired hybrid optimization algorithm to improve prediction accuracy on imbalance medical datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- G Vanitha, M Kasthuri, A robust feature selection approach for high-dimensional medical data classification using enhanced correlation attribute evaluation , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Bommaiah Boya, Premara Devaraju, Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Nitin J. Wange, Sachin V. Chaudhari, Koteswararao Seelam, S. Koteswari, T. Ravichandran, Balamurugan Manivannan, Algorithmic material selection for wearable medical devices a genetic algorithm-based framework with multiscale modeling , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Energy efficient techniques for iot application on resource aware fog computing paradigm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

