Lightweight Feature Selection Method using Quantum Statistical Ranking and Hybrid Beetle-Bat Optimization for Smart Farming
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.9.04Keywords:
Feature selection, IoT, precision agriculture, optimization, quantum statistics, beetle antennae search, binary bat algorithm, high-dimensional dataDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The advancement of IoT-enabled smart farming systems has generated massive high-dimensional datasets, creating challenges in feature selection, classification accuracy, and computational efficiency. Existing feature selection techniques, including ReliefF, LASSO, and Recursive Feature Elimination (RFE), achieve moderate performance but struggle with scalability and runtime constraints. Similarly, wrapper-based optimization methods like Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) provide higher accuracy but incur significant computational overhead, making them unsuitable for real-time IoT applications. To address these limitations, this study proposes a Quantum-Enhanced Mutual Rank Index with Beetle-Bat Optimization (QStat-BBO) framework for lightweight and adaptive feature selection. The proposed approach integrates Quantum-Enhanced Mutual Rank Index (Q-MRI) to prioritize features based on mutual dependencies and utilizes Beetle-Bat Optimization (BBO) to refine optimal feature subsets efficiently. Three IoT-based agricultural datasets from smart farming environments are used to evaluate the framework. Experimental results demonstrate that QStat-BBO consistently outperforms state-of-the-art methods, achieving up to 97.4% classification accuracy, 0.975 F1-score, and an average feature reduction rate of 63.5%, while reducing runtime by nearly 40% compared to traditional metaheuristics. These results confirm the effectiveness of QStat-BBO in enhancing prediction performance, reducing redundancy, and improving computational efficiency, making it well-suited for resource-constrained IoT-based agricultural analytics.Abstract
How to Cite
Downloads
Similar Articles
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Kumari Neha, Amrita ., Quantum programming: Working with IBM’S qiskit tool , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Radha K. Jana, Dharmpal Singh, Saikat Maity, Modified firefly algorithm and different approaches for sentiment analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- M. Ragul, A. Aloysius, V. Arul Kumar, Enhancing IoT blockchain scalability through the eepos consensus algorithm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- G. Chitra, Hari Ganesh S., Cultural algorithm based principal component analysis (CA-PCA) approach for handling high dimensional data , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Chandrasekaran M, Rajesh P K, Optimization of cost to customer of power train in commercial vehicle using knapsack dynamic programming influenced by vehicle IoT data , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- K. Fathima, A. R. Mohamed Shanavas, TALEX: Transformer-Attention-Led EXplainable Feature Selection for Sentiment Classification , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

