AT&C and non-technical loss reduction in smart grid using smart metering with AI techniques
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.8.06Keywords:
Smart Grid, Smart Metering, Non-Technical Losses (NTLs), Electricity Theft, Temporal Convolutional Networks (TCN), Light Gradient Boosting Machine (LightGBM), Advanced Metering Infrastructure (AMI), Fraud Detection.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Aggregate Technical and Commercial (AT&C) damage are a serious issue for electricity distribution companies globally, hindering economic growth and sustainability. Among them, non-technical losses (NTLs), such as electricity theft, fraud, and non-payment, contribute to substantial financial losses and may jeopardize power quality and grid stability. Growing usage of smart grids and Advanced Metering Infrastructure (AMI) opens new ways of effective management of energy, as well as sophisticated approaches to electricity theft, creating demands on cutting-edge methods of detection. This research aims to enhance NTL detection by introducing a hybrid approach that integrates Temporal Convolutional Networks (TCN) and LightGBM, or Light Gradient Boosting Machine. TCNs are used in order to detect complex temporal features in smart meter consumption records, recognizing sequential patterns characteristic of fraudulent behaviour. LightGBM, which is an extremely effective gradient boosting architecture, which is then applied to classify consumption behaviour correctly as normal or suspicious. An real dataset is used to train and evaluate the suggested model of smart meter records, demonstrating its ability to discriminate between normal and potentially fraudulent consumption patterns. Results present promising effectiveness in identifying usual use; however, the research indicates challenges to achieving high accuracy and memory in detecting energy theft. This emphasizes the necessity of further research and model refinement to enhance its effectiveness in real-world applications and to counteract the negative impacts of NTLs on electricity utilities and consumers.Abstract
How to Cite
Downloads
Similar Articles
- Archana Borde, Dattatraya Pandurang Rane, Pratap Vasantrao Pawar, Role of artificial intelligence in digital marketing in enhancing customer engagement , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- M. Rajalakshmi, V. Sulochana, Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R. Sridevi, V. S. J. Prakash, Load aware active low energy adaptive clustering hierarchy for IoT-WSN , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sruthy M.S, R. Suganya, An efficient key establishment for pervasive healthcare monitoring , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Monika, J. Merline Vinotha, Optimization of a Lean Vendor–Buyer Supply Chain Model under Neutrosophic Fuzzy Environment with Transportation, Loading, and Unloading Considerations , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- S. SATHIYAVATHI, V. MATHIVANAN, SELVI SABHANAYAKAM, WESTERN BLOT ASSAY OF SELECTED PATIENTS BLOOD INFECED WITH HIV : IN AND AROUND SALEM DISTRICT, TAMILNADU, INDIA. , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Sabeerath K, Manikandasaran S. Sundaram, BTEDD: Block-level tokens for efficient data deduplication in public cloud infrastructures , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Desalu Tamirat, Tesfaye Getachew , Worku masho, Zelalem Admasu , Morphological and morphometric features of indigenous chicken in North Shewa zone, Oromia regional state, Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Prakash Lakhani, Premasish Roy, Souren Koner, Deepa Nair, D. Patil, Mona Sinha, Exploring the influence of work-life balance on employee engagement in Mumbai’s real estate industry , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 20 21 22 23 24 25 26 27 28 29 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Dimpal Khambhati, Chirag Patel, Analyzing cardiac physiology: ECG ensemble averaging and morphological features under treadmill-induced stress in LabVIEW , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper

