AT&C and non-technical loss reduction in smart grid using smart metering with AI techniques
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.8.06Keywords:
Smart Grid, Smart Metering, Non-Technical Losses (NTLs), Electricity Theft, Temporal Convolutional Networks (TCN), Light Gradient Boosting Machine (LightGBM), Advanced Metering Infrastructure (AMI), Fraud Detection.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Aggregate Technical and Commercial (AT&C) damage are a serious issue for electricity distribution companies globally, hindering economic growth and sustainability. Among them, non-technical losses (NTLs), such as electricity theft, fraud, and non-payment, contribute to substantial financial losses and may jeopardize power quality and grid stability. Growing usage of smart grids and Advanced Metering Infrastructure (AMI) opens new ways of effective management of energy, as well as sophisticated approaches to electricity theft, creating demands on cutting-edge methods of detection. This research aims to enhance NTL detection by introducing a hybrid approach that integrates Temporal Convolutional Networks (TCN) and LightGBM, or Light Gradient Boosting Machine. TCNs are used in order to detect complex temporal features in smart meter consumption records, recognizing sequential patterns characteristic of fraudulent behaviour. LightGBM, which is an extremely effective gradient boosting architecture, which is then applied to classify consumption behaviour correctly as normal or suspicious. An real dataset is used to train and evaluate the suggested model of smart meter records, demonstrating its ability to discriminate between normal and potentially fraudulent consumption patterns. Results present promising effectiveness in identifying usual use; however, the research indicates challenges to achieving high accuracy and memory in detecting energy theft. This emphasizes the necessity of further research and model refinement to enhance its effectiveness in real-world applications and to counteract the negative impacts of NTLs on electricity utilities and consumers.Abstract
How to Cite
Downloads
Similar Articles
- K. Hima Bindu, How can India strengthen mental health services as part of its efforts to promote holistic wellbeing by 2047 , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Dinesh Kumar Verma, Ruchi Tripathi, Vijai Krishna Dsa, Rakesh Kumar Pandey, Histopathological Changes in Liver and Kidney of Heteropneustes fossilis (Bloch) on Chlorpyrifos Exposure , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- C. Mohan Raj, M. Sundaram , M. Anand, Automation of industrial machinerie , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Iftikhar A. Tayubi, Mayur D. Jakhete, Spoorthi B. Shetty, Ashish Verma, Mohit Tiwari, S. Kiruba, Sustainable healthcare AI-enhanced materials discovery and design for eco-friendly and biocompatible medical applications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V. Karthikeyan, C. Jayanthi, Improving image quality assessment with enhanced denoising autoencoders and optimization methods , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Vibhu Tripathi, India’s transformative journey: A decade and a half of growth, innovation, and inclusive progress , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Ayalew Ali, Sitotaw Wodajio, Audit committee characteristics nexus corporate social responsibilities disclosure of insurance companies in Ethiopia , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Deena Merit C K , Haridass M, Analysis of multiple sleeps and N-policy on a M/G/1/K user request queue in 5g networks base station , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
<< < 18 19 20 21 22 23 24 25 26 27 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Dimpal Khambhati, Chirag Patel, Analyzing cardiac physiology: ECG ensemble averaging and morphological features under treadmill-induced stress in LabVIEW , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper

