Analyzing cardiac physiology: ECG ensemble averaging and morphological features under treadmill-induced stress in LabVIEW
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.7.05Keywords:
cardiac function, R-peak enhancement, ensemble averaging, cardiac rehabilitation, repolarization analysis, amplitude varianceDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study uses a LabVIEW-based platform to analyze ECG signals in-depth in order to examine the long-term effects of exercise-induced stress on cardiac function. About 25 human subjects participated in a standardized treadmill exercise program that was continued until voluntary exertion. Blood pressure (BP) and heart rate (HR) were measured three times: while at rest, right after exercise, and five minutes after recovery. To assess myocardial workload, the rate-pressure product (RPP) was computed at each stage.Abstract
Under all circumstances, continuous ECG data were recorded, and a specially created LabVIEW interface was used to analyze the waveforms. Important morphological characteristics, such as intervals and segments, as well as P-wave, QRS complex, and T-wave amplitudes, were extracted. R-R interval detection was used to segment each ECG cycle, and multiple cardiac cycles were aligned before being averaged as a group. This method made precise morphological analysis possible by greatly improving R-peak clarity and lowering noise.
R-peak amplitude, QRS duration stability, and T-wave morphology all showed steady improvements over the course of a five-week observational period, suggesting improved cardiac efficiency and recovery adaptation. Waveform variability was significantly reduced, according to amplitude variance analysis conducted before and after averaging. In order to evaluate repolarization abnormalities, derived ratios like R-Q/S-Q/HR and T-Q/R-Q/HR were also examined; trends indicated that exercise conditioning caused normalized repolarization. The signal processing approach demonstrated its dependability in ECG analysis with an overall feature detection accuracy of 90 to 93%.
Particularly in the contexts of cardiac rehabilitation, exercise physiology, and preventive cardiovascular screening, the suggested methodology provides a reliable, non-invasive way to track changes in cardiac function. Its use could include ongoing health monitoring in practical contexts and customized healthcare systems.
How to Cite
Downloads
Similar Articles
- Neha Chitale, Lajwanti Lalwani, A Bibliometric Analysis of Global Research From 1928 To 2019 On Mobilization with Movement on Functional Disability in Low Back Pain , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Muhammed Jouhar K. K., K. Aravinthan, A bigdata analytics method for social media behavioral analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Muhammed Jouhar K. K., Dr. K. Aravinthan, An improved social media behavioral analysis using deep learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Brijesh Singh, Ajay Massand, Determinants of Gen Z’s adoption of chatbots in online shopping: An empirical investigation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Selva Kumar D, Revisiting the challenges of disinvestment practices and central public sector enterprises (CPSEs): Indian empirical evidence , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- R. Sakthiraman, L. Arockiam, RRFSE: RNN biased random forest and SVM ensemble for RPL DDoS in IoT-WSN environment , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Abbasova Sona Jamal, Aliyev Sabit Shakir, Mahmudov Elmir Heydar, Museyibli Emin Bakir, Nadirkhanova Dilshat Adalat, Econometric analysis of grain yields (using the example of the Republic of Azerbaijan) , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Nida Syeda, Kishore Selva Babu, Exploring the role of digital humanities in the centralization of knowledge production: Clusters, networks, or echo chambers , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rashmi Chandra, Afroz Alam, Phytochemical Analysis Using X-ray Diffraction Spectroscopy (XRD) and GC-MS Analysis of Bioactive Compounds in Cucumis sativus L. (Angiosperms; Cucurbitaceae) , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Jadhav Girish Vasantrao, Chirag Patel, AT&C and non-technical loss reduction in smart grid using smart metering with AI techniques , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper

