Analyzing cardiac physiology: ECG ensemble averaging and morphological features under treadmill-induced stress in LabVIEW
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.7.05Keywords:
cardiac function, R-peak enhancement, ensemble averaging, cardiac rehabilitation, repolarization analysis, amplitude varianceDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study uses a LabVIEW-based platform to analyze ECG signals in-depth in order to examine the long-term effects of exercise-induced stress on cardiac function. About 25 human subjects participated in a standardized treadmill exercise program that was continued until voluntary exertion. Blood pressure (BP) and heart rate (HR) were measured three times: while at rest, right after exercise, and five minutes after recovery. To assess myocardial workload, the rate-pressure product (RPP) was computed at each stage.Abstract
Under all circumstances, continuous ECG data were recorded, and a specially created LabVIEW interface was used to analyze the waveforms. Important morphological characteristics, such as intervals and segments, as well as P-wave, QRS complex, and T-wave amplitudes, were extracted. R-R interval detection was used to segment each ECG cycle, and multiple cardiac cycles were aligned before being averaged as a group. This method made precise morphological analysis possible by greatly improving R-peak clarity and lowering noise.
R-peak amplitude, QRS duration stability, and T-wave morphology all showed steady improvements over the course of a five-week observational period, suggesting improved cardiac efficiency and recovery adaptation. Waveform variability was significantly reduced, according to amplitude variance analysis conducted before and after averaging. In order to evaluate repolarization abnormalities, derived ratios like R-Q/S-Q/HR and T-Q/R-Q/HR were also examined; trends indicated that exercise conditioning caused normalized repolarization. The signal processing approach demonstrated its dependability in ECG analysis with an overall feature detection accuracy of 90 to 93%.
Particularly in the contexts of cardiac rehabilitation, exercise physiology, and preventive cardiovascular screening, the suggested methodology provides a reliable, non-invasive way to track changes in cardiac function. Its use could include ongoing health monitoring in practical contexts and customized healthcare systems.
How to Cite
Downloads
Similar Articles
- Elizabeth Mize, A critical analysis of the continuing professional development of teachers in India through the lens of NEP 2020 , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- P. John Robinson, P. Susai Alexander, Neural net influenced magdm problem with modified choquet integral aggregation operators and correlation coefficient for triangular fuzzy intuitionistic fuzzy sets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Priyanka, Sandeep, Tarang Shrivastava, Sandeep Kumar, Vinay Viratia, Kinesio Taping Along with PNF Stretching Improved Ankle Dorsiflexion in Children with Spastic Diplegic Cerebral Palsy , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Ravi Chaware, Sajid Anwar, Sunil Prayagi, Thermoelastic response of a finite thick annular disc with radiation-type conditions via time fractional-order effects , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Rajesh Kumar Singh, Genetic Variability in Aromatic Rice , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Venkatesh R, A study on women empowerment by enhancing saving capabilities – through self-help groups , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Thangatharani T, M. Subalakshmi, Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Shobhit Shukla, Suman Mishra, Gaurav Goel, River flow modeling for flood prediction using machine learning techniques in Godavari river, India , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Arunachalaprabu G, Fathima Bibi K, A pattern-driven Huffman encoding and positional encoding for DNA compression , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Jadhav Girish Vasantrao, Chirag Patel, AT&C and non-technical loss reduction in smart grid using smart metering with AI techniques , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper

