
Abstract
This study uses a LabVIEW-based platform to analyze ECG signals in-depth in order to examine the long-term effects of exercise-induced 
stress on cardiac function. About 25 human subjects participated in a standardized treadmill exercise program that was continued 
until voluntary exertion. Blood pressure (BP) and heart rate (HR) were measured three times: while at rest, right after exercise, and five 
minutes after recovery. To assess myocardial workload, the rate-pressure product (RPP) was computed at each stage.
Under all circumstances, continuous ECG data were recorded, and a specially created LabVIEW interface was used to analyze the 
waveforms. Important morphological characteristics, such as intervals and segments, as well as P-wave, QRS complex, and T-wave 
amplitudes, were extracted. R-R interval detection was used to segment each ECG cycle, and multiple cardiac cycles were aligned 
before being averaged as a group. This method made precise morphological analysis possible by greatly improving R-peak clarity and 
lowering noise.
R-peak amplitude, QRS duration stability, and T-wave morphology all showed steady improvements over the course of a five-week 
observational period, suggesting improved cardiac efficiency and recovery adaptation. Waveform variability was significantly reduced, 
according to amplitude variance analysis conducted before and after averaging. In order to evaluate repolarization abnormalities, derived 
ratios like R-Q/S-Q/HR and T-Q/R-Q/HR were also examined; trends indicated that exercise conditioning caused normalized repolarization. 
The signal processing approach demonstrated its dependability in ECG analysis with an overall feature detection accuracy of 90 to 93%.
Particularly in the contexts of cardiac rehabilitation, exercise physiology, and preventive cardiovascular screening, the suggested 
methodology provides a reliable, non-invasive way to track changes in cardiac function. Its use could include ongoing health monitoring 
in practical contexts and customized healthcare systems.
Keywords: ECG signal processing, LabVIEW, Treadmill exercise, Cardiac function, Rate pressure product, R-peak enhancement, Ensemble 
averaging, Heart rate recovery, Biomedical signal analysis, Cardiac rehabilitation, Repolarization analysis, Amplitude variance.
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Introduction 
The preservation of physiological homeostasis is largely 
dependent on the human cardiovascular system. The heart 
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is a muscular organ at the center of this system that uses 
complex mechanisms controlled by electrical, mechanical, 
and metabolic pathways to dynamically adapt to physical 
demands. Electrocardiography (ECG) is a basic method of 
studying cardiac function and identifying abnormalities 
in these regulatory processes. The electrical activity 
of the heart is measured by an ECG, which records the 
depolarization and repolarization that occur during each 
heartbeat (Garcia et al., 2000).

Numerous intricate processes, such as myocardial 
contractility, atrioventricular conduction, autonomic 
nervous system modulation, and sinoatrial node pacemaker 
activity, are involved in cardiac physiology. Changes in 
the P-wave, QRS complex, or T-wave are examples of how 
any deviation in these events can show up as changed 
waveform characteristics (Khambhati et al., 2021). Assessing 
these alterations during physiological stress, like exercise, 
offers important information about the heart’s capacity for 
adaptation and recovery.
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Exercise affects cardiac physiology in both short-term and 
long-term ways. In order to meet metabolic demands, it 
acutely causes peripheral vasodilation, increased cardiac 
output, and elevated HR. Regular aerobic exercise improves 
myocardial efficiency, lowers resting heart rate, optimizes 
autonomic balance, and increases stroke volume over the 
long term. These modifications lower the risk of cardiac 
events and enhance general cardiovascular health. In 
controlled environments, treadmill exercise is especially 
useful for triggering these cardiovascular reactions.

Notably, people who regularly work out on a dynamic 
treadmill typically have better cardiac performance than 
people who are sedentary. Regular exercisers showed 
improved heart rate recovery, larger R-peak amplitudes, 
and less ECG morphological variability. These patterns 
show improved myocardial efficiency and autonomic 
control. On the other hand, people who don’t follow a set 
exercise routine frequently exhibit higher repolarization 
irregularities, lower R-peak intensities, and delayed heart 
rate normalization, all of which are signs of impaired cardiac 
adaptability (Preejith et al., 2020).

Furthermore, the treadmill protocol’s structure is crucial 
for cardiac evaluation. The Bruce Protocol, a clinically 
validated multi-stage treadmill test in which the incline 
and speed increase at predetermined three-minute 
intervals, was used in this investigation. This incremental 
design improves the consistency of workload assessment 
across subjects and sessions by offering a progressive 
and standardized cardiovascular challenge. It is simpler to 
correlate ECG changes with particular workload thresholds 
because of the consistent stress application provided by 
the predictable increases in exertion (Rajalakshmi et al., 
2013). Conversely, irregular physiological loading brought 
about by non-standard or haphazardly changed treadmill 
routines can make it more difficult to interpret ECG readings 
and obscure subtle signs of cardiac improvement. Thus, 
the structured escalation of the Bruce Protocol makes it 
possible to identify exercise-induced cardiac adaptation 
and repolarization trends more precisely, providing a solid 
basis for comparing cardiac responses within and between 
subjects.

A clinically recognized technique for evaluating the 
heart’s function under increased workload is the treadmill 
stress test. It makes it possible to track blood pressure 
dynamics, heart rate recovery, and ECG changes in real 
time—all of which are important markers of cardiovascular 
fitness. In order to assess the cardiac stress response and 
recovery efficiency, ECG readings were obtained at rest, 
right after exertion on a treadmill, and after a five-minute 
recovery period.

The integration of blood pressure (BP), heart rate (HR), 
and the rate-pressure product (RPP) is a crucial part of 
this analysis. These metrics are crucial for evaluating the 
workload and oxygen consumption of the heart at various 

phases of the exercise regimen. The two main techniques for 
measuring myocardial oxygen consumption and workload 
are the Direct and Indirect Index.

The measurement of oxygen uptake in the coronary 
arteries, which is frequently impractical for routine 
clinical assessments, provides the most direct indication 
of myocardial oxygen consumption. Nevertheless, the 
metabolic demand and workload of the heart during 
exertion can also be used to indirectly estimate myocardial 
oxygen consumption (MVO2). The heart requires a lot of 
energy, especially when exercising, when its workload rises 
because of elevated heart rate and systolic blood pressure. 
An indirect but trustworthy indicator of myocardial oxygen 
consumption is the RPP. The cardiac workload and oxygen 
demand can be inferred from the RPP. It measures the 
amount of stress the heart experiences during physical 
activity and represents the effort the heart puts forth to 
pump blood. RPP rises with exercise, indicating increased 
myocardial oxygen consumption and workload, just as 
HR and BP do. A decrease in RPP during recovery signifies 
enhanced myocardial effectiveness and a reduction in 
oxygen demand, which is a crucial indicator of heart function 
recovery (Thomas et al., 2019).

The longitudinal analysis of HR, BP, and RPP in this 
study aids in determining how well the heart adjusts to and 
recovers from the stress of treadmill exercise. Improved ECG 
features and a low RPP during recovery may indicate that the 
heart is functioning more effectively and needs less oxygen 
to meet the same physiological demands (Wang et al., 2006). 
When assessing cardiac function and adaptation in patients 
undergoing rehabilitation or those participating in regular 
aerobic exercise, these observations are especially crucial.

Advanced ECG analysis, however, requires more than 
simple measurement and visual inspection. Particularly 
during and after exercise, noise from movement, perspiration, 
or equipment limitations frequently taints the raw signal. A 
high-fidelity analytical platform is required for this. Because 
of its robust graphical programming features, support for 
real-time signal acquisition, and adaptable processing 
modules, LabVIEW was chosen for this use. LabVIEW makes 
it easier to automatically extract important ECG parameters 
in addition to facilitating precise filtering and segmentation 
(Zhang et al., 2002).

An innovative component of this study involves the 
derivation and analysis of novel composite ratios, specifically 
R-Q/S-Q/HR and T-Q/R-Q/HR, aimed at providing deeper 
insights into repolarization dynamics and cardiac workload 
adaptation. These ratios are grounded in a physiological 
understanding of the cardiac cycle, particularly the timing 
between ventricular depolarization and repolarization, and 
how HR modulates these.

Normalized by heart rate, the R-Q/S-Q/HR ratio is 
intended to measure the temporal relationship between the 
R-Q and S-Q intervals. While the S-Q interval continues into 
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the early repolarization phase, the R-Q interval records the 
pre-peak conduction preceding the ventricular contraction 
(Zhong et al., 2011). This ratio offers a time-adjusted 
indicator of the shift from depolarization to repolarization 
by accounting for HR. This is important because heart rate 
affects the length of electrical phases and directly affects 
myocardial oxygen demand. If heart rate is not controlled, 
it can shorten repolarization at higher rates, which can 
impair recovery.

The balance between the R-Q interval, which represents 
ventricular excitation, and the T-Q interval, which represents 
electrical diastole and ventricular repolarization, is also 
examined by the T-Q/R-Q/HR ratio. After adjusting for 
heart rate once more, this composite ratio provides an 
indication of how well the heart moves from systole to 
diastole and back. These intervals are dynamically but 
proportionately modulated in a healthy heart under 
exercise stress; deviations from this pattern may indicate 
electrical instability, inadequate autonomic adaptation, or 
latent pathologies like autonomic dysfunction or ischemia 
(Wolthuis et al., 1979).

These ratios offer a normalized, non-invasive method 
of evaluating repolarization abnormalities, an area that 
is frequently overlooked in standard ECG interpretations. 
Even though repolarization changes are small and 
usually obscured by larger changes in the ST segment 
or QRS complex, they are very useful for diagnosis. 
This study intends to capture subtle trends in cardiac 
electrophysiological adaptation, specifically improvements 
in ventricular recovery times, autonomic regulation, and 
oxygen utilization efficiency, by longitudinally monitoring 
R-Q/S-Q/HR and T-Q/R-Q/HR over the course of a five-week 
treadmill exercise program (Zhong et al., 2011).

Furthermore, the incorporation of these composite ratios 
enables correlation with other workload indices such as 
RPP, providing a multidimensional picture of how the heart 
responds and adapts to consistent aerobic conditioning. The 
combination of signal-level and functional indices allows for 
a robust evaluation of cardiac health, supporting the broader 
objective of this research—to enable early detection and 
personalized monitoring of cardiovascular adaptation using 
accessible, real-time biomedical tools like LabVIEW.

In order to determine the inter-subject variability and 
adaptability to exercise-induced cardiac stress, this study 
also looked at subject-specific responses over a number 
of time points. For every morphological feature across 
conditions, mean ± SD values were computed, yielding 
statistically significant trends in cardiac performance. The 
algorithmic framework was validated by computing the 
sensitivity, specificity, and precision of peak detection using 
ground-truth annotations (Khambhati et al., 2019).

The use of ensemble averaging, which is implemented 
in LabVIEW, is a novel feature of this study. Multiple ECG 
cycles are aligned and averaged to greatly reduce sporadic 

noise and reveal consistent patterns like R-peak amplitude 
(Henriksson et al., 2019). High-resolution analysis of minute 
waveform components that might otherwise go overlooked 
is made possible by this averaging technique. The reliability 
of identifying cardiac adaptation is increased by the capacity 
to precisely analyze amplitude and segment variance.

This study provides a thorough framework for assessing 
cardiac adaptation and recovery by concentrating on 
morphological and functional cardiac metrics and how 
they alter over the course of a structured training program. 
The findings may find use in cardiac rehabilitation, fitness 
tracking, and the early identification of electrophysiological 
abnormalities.

Methodology
In order to assess changes in cardiac function over time, this 
study used a systematic approach that combined advanced 
ECG signal processing, standardized treadmill exercise, 
and physiological data collection. Subject screening, Bruce 
Protocol-based controlled exercise execution, multi-phase 
data recording, and LabVIEW-based ECG signal analysis 
comprised the core workflow. Using waveform-based 
indices and composite metrics, the methodology was 
created to measure both morphological and functional 
improvements in cardiac activity.

To systematically implement this, a block diagram–
driven approach was developed, as illustrated in Figure 1. 
The flow diagram outlines the complete process, from input 
acquisition to feature extraction and evaluation, ensuring 
traceable, repeatable, and scalable analysis.

Figure 1: Flow chart of proposed system
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Subject Selection and Exercise Protocol 
A total of twenty-five healthy adult participants (n = 25), 
aged between 20 and 35 years, were selected for this 
longitudinal exercise-based study. A comprehensive 
pre-enrollment screening procedure was performed 
on each participant to rule out any prior neurological, 
metabolic, or cardiovascular disease conditions. Normal 
blood pressure, a BMI between 18.5 and 29.9 kg/m2, and 
the lack of prescription drugs that affect heart function 
were among the requirements for inclusion. To preserve 
uniformity in baseline cardiac adaptability, subjects who 
had previously engaged in regular endurance training 
were not included.

Each subject voluntarily participated after being 
informed of the study protocol and signed a written consent 
form, as approved by the institutional ethical committee. 
Participants were enrolled in a structured five-week 
treadmill exercise intervention conducted once weekly. The 
treadmill protocol adopted was a modified Bruce Protocol, a 
standardized cardiac stress testing method commonly used 
in clinical evaluations. This protocol progressively increased 
the treadmill speed and incline at fixed intervals (typically 
every three minutes), providing a controlled and gradually 
intensifying cardiovascular workload.

The exercise was continued until the participant 
experienced volitional fatigue, which was indicated by 
a rating of ≥17 on the Borg rating of perceived exertion 
(RPE) scale, or earlier at the participant’s request. Accurate 
physiological profiling was made possible while maintaining 
participant safety thanks to this gradual and controlled 
loading technique.

In addition to ECG and hemodynamic monitoring, 
baseline physical and cardiovascular parameters were 
recorded for each participant prior to the intervention 
period.

These baseline traits were used as a point of comparison 
when assessing how exercise affected cardiac function over 
time. Understanding inter-subject physiological variations 
in response to cardiovascular stress was also made possible 
by the variability seen in HR and RPP values.

Data Acquisition 
Cardiovascular and electrophysiological parameters were 
recorded at three key time points during each weekly 
session:
•	 Resting State: Five minutes prior to treadmill activity, 

while the subject remained seated.
•	 Immediate Post-Exercise: Within 30 seconds of 

cessation of treadmill activity.
•	 Recovery Phase: After five minutes of seated rest, post-

exercise.
A high-resolution ECG acquisition hardware system 

set up in a typical three-lead Einthoven configuration was 

used to collect the electrocardiographic data. In order to 
maximize R-wave morphology and improve signal quality, 
a three-lead ECG was simultaneously recorded using surface 
electrodes arranged in Lead II configuration (right arm to 
left leg). To ensure high temporal fidelity, the ECG signals 
were sampled at 1 kHz. Importantly, real-time streaming of 
the raw ECG data into the LabVIEW environment was done 
in order to calculate the instantaneous heart rate (HR) and 
to store and segment the ECG signals for morphological 
analysis at a later time. 

A clinically validated digital sphygmomanometer was 
used to measure systolic blood pressure (SBP), guaranteeing 
consistent and repeatable readings throughout each 
session. The RPP, which is defined as follows, was calculated 
using these values (Zhong et al., 2011): 

RPP = HR × SBP

RPP functions as a trustworthy but indirect measure of 
cardiac workload and myocardial oxygen consumption 
(MVO₂). To measure cardiac demand and recovery 
effectiveness, RPP values were assessed for each subject 
under the three conditions of rest, immediately following 
exercise, and recovery.

This seamless integration between hardware acquisition 
and software processing enabled continuous monitoring of 
cardiac electrical activity and eliminated post-processing 
delays. The use of LabVIEW for signal analysis allowed for 
automated data extraction, consistency in waveform feature 
identification, and real-time feedback during each session.

The system was calibrated before each use to ensure 
signal fidelity and accuracy. All sessions were conducted in a 
controlled gym environment with stable room temperature 
and minimal external interference. Participants followed 
strict pre-session guidelines, including refraining from 
caffeine, alcohol, or intense physical activity for at least 
12 hours prior to testing. These controls ensured data 
consistency and reliability across the five-week period.

Table 1: Anthropometric and hemodynamic profile of study subjects 
(n = 25)

Variables Mean ± SD

No of Subjects 25

Gender (M/F) 11M, 14F

Age (years) 25.3 ± 3.20

Weight (Kg) 62.1 ± 5.15

Height (cm) 162.8 ± 5.34

BMI (kg/m²) 23.8 ± 2.02

SBP (mmHg) 126.1 ± 7.92

HR (BPM) 89.9 ± 10.05

RPP 11351.4 ± 1234.87
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ECG Signal Processing Using LabVIEW
The ECG data acquired in real-time were subjected to 
an intricate signal processing workflow using LabVIEW, 
ensuring a detailed and noise-minimized interpretation of 
the cardiac cycles. Initially, raw ECG signals were imported 
directly from the acquisition hardware and displayed as 
unprocessed waveforms, reflecting all real-time cardiac 
electrical activity along with baseline drift and motion 
artifacts. These signals included both high-frequency noise 
from muscle activity and low-frequency trends due to 
respiration and electrode movement (Figure 2).

To address these challenges, a trend-removal step was 
implemented where a bandpass filter (typically between 
0.5 Hz and 40 Hz) was applied to eliminate slow drifts and 
high-frequency disturbances. This resulted in a cleaner 
signal that more accurately represented the physiological 
cardiac waveform without introducing artificial distortion, 
which is illustrated in Figure 3.

Following this, the denoised ECG was analyzed for 
R-peak detection, which involved a combination of slope 
analysis and threshold crossing methods embedded in 
LabVIEW’s algorithmic environment. Detected R-peaks 
were marked (Figure 4) in the time series and subsequently 
verified against manually annotated ground-truth ECG 
datasets to ensure accuracy and minimize false positives.

Following peak validation, the signal was divided into 
distinct cardiac cycles using R-R intervals. To allow for 
comparative analysis, these cycles were realigned in time. 
In order to observe waveform consistency and identify any 

Figure 2: Raw ECG signal with baseline drift and motion artifacts

Figure 3: Filtered ECG signal after baseline drift and noise removal

Figure 4: R-peak detection in filtered ECG signal using LabVIEW

Figure 5: Overlapped ECG cycles for morphological comparison

Figure 6: Ensemble-averaged ECG Waveform

morphological changes, such as ST-segment elevation or 
QRS complex broadening, under exercise-induced stress, it 
was crucial to plot all of these cardiac cycles together (Figure 
5) in an overlapping format.

The final step involved ensemble averaging, where 
multiple aligned ECG cycles were averaged into a composite 
waveform (Figure 6). This method effectively suppressed 
random noise and emphasized consistent morphological 
features like the P-wave onset, R-peak amplitude, and T-wave 
slope. The ensemble-averaged waveform provided a reliable 
representation of the cardiac signal at any specific time point 
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repolarization, which is a hallmark of positive cardiac 
adaptation. Javorka et al. (2002), who showed that endurance 
training significantly modifies repolarization parameters, 
especially T-wave morphology and QT duration, support 
these findings. Notably, in the current study, a consistent 
increase in P-wave amplitude and a mild decrease in 
QRS duration were observed, suggesting improved atrial 
depolarization and ventricular conduction efficiency. Such 
changes are also reported in Jelinek et al. (2015), validating 
the physiological improvements observed.

Composite Ratio Analysis: Repolarization Indicators
To evaluate ventricular repolarization timing adaptations, 
composite ratios such as R-Q/ S-Q/ HR and T-Q/ R-Q/ HR were 
calculated across five weeks of exercise sessions (Figure 9). 

This trend indicates improved electrical stability of the 
myocardium under exercise-induced stress. Prior work by 
Zhong et al. (2011) explored similar repolarization metrics 
but over a shorter intervention span and fewer sessions. 
Compared to their marginal changes, the current study 
demonstrates more robust adaptations, likely due to the 
structured and consistent exercise regime. Both ratios 
showed a consistent and progressive decline over the study 
period. Specifically, the R-Q/ S-Q/ HR ratio reduced from an 
initial normalized value of 1.00 in Week 1 to 0.85 by Week 
5, while the T-Q/ R-Q/ HR ratio declined from 1.00 to 0.83.

This notable decline suggests increased cardiac 
adaptation to repeated exercise stress by indicating better 
electrical stability and fewer repolarization abnormalities. 
The radar chart’s narrowing pattern confirms this coordinated 
improvement in repolarization markers over time. This 
steady trend emphasizes how structured treadmill exercise 
improves the electrical remodelling of the heart and lessens 
vulnerability to abnormal repolarization brought on by 
exercise. 

Figure 7: Line graph showing HR trends (Rest vs. Post-Exercise vs. 
Recovery)

during the protocol.
Overall, this systematic and layered signal processing 

approach from raw acquisition to Denoising, peak detection, 
segmentation, overlapping analysis, and averaging enabled 
robust and reproducible ECG interpretation. It laid the 
foundation for identifying morphological trends linked to 
cardiac efficiency, autonomic adaptation, and recovery post-
exercise across the five-week treadmill protocol.

Results and Discussion 
This section presents detailed observations of ECG 
morphological and hemodynamic adaptations to structured 
treadmill exercise, followed by a comparative analysis with 
previous studies to contextualize the findings.

Heart Rate and Rate Pressure Product (RPP) Trends
Figure 7 shows the mean HR trends for all subjects across 
the three phases: resting, immediate post-exercise, and 
recovery. The observed pattern of sharp post-exercise HR 
elevation followed by a gradual decline during recovery 
(Figure 7) is consistent with established exercise physiology 
literature. Similar temporal trends were reported by Wang 
et al. (2006), where trained individuals exhibited faster HR 
recovery due to enhanced autonomic modulation. 

Rate pressure product, a surrogate marker for myocardial 
oxygen consumption, was calculated as HR × SBP. Figure 
8 illustrates the RPP profile. Furthermore, the reduction in 
RPP from Week 1 to 5 (Figure 8) mirrors findings by Nagpal 
et al. (2007), who demonstrated that chronic aerobic 
training reduces myocardial oxygen demand and improves 
cardiac efficiency, particularly in hypertensive subjects. The 
current study’s results not only confirm these physiological 
adaptations but also provide a quantitative illustration of 
improved cardiovascular efficiency over repeated exercise 
sessions.

ECG Feature Extraction
The improvements in T-wave amplitude and reduction in 
QT interval (Table 2) are indicative of enhanced ventricular 

Figure 8: Comparison of RPP distribution and HR for Week 1 vs 5

Table 2: Mean ± SD ECG features across all subjects (Week 1 vs. 5)

Feature Week 1 (Mean ± SD) Week 5 (Mean ± SD)

P-wave Amp (mV) 0.18 ± 0.02 0.21 ± 0.01

QRS Duration (ms) 98 ± 8 92 ± 6

T-wave Amp (mV) 0.23 ± 0.03 0.28 ± 0.02

QT Interval (ms) 420 ± 15 410 ± 10
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Algorithm Validation
The performance of the custom-designed R-peak detection 
algorithm implemented in the LabVIEW environment was 
quantitatively validated using annotated ground-truth ECG 
datasets. The algorithm demonstrated robust detection 
capabilities, yielding the following performance metrics 
(Table 3):

The R-peak detection algorithm exhibited high accuracy 
with sensitivity, precision, and specificity, which aligns 
well with benchmarks reported in the literature Wolthuis 
et al., (1979). These metrics show a high level of accuracy 
in identifying real cardiac events while reducing false 
positives. The algorithm’s sensitivity indicates its capacity 
to detect R-peaks accurately and without missing beats, 
which is essential for precise heart rate (HR) computation 
and morphological analysis that follows. The ability of 
the method to prevent false-positive detections, which 
guarantees that non-peak signals are not mistakenly 
categorized as R-peaks, is indicated by the specificity. By 
measuring the percentage of true positive detections 
among all detected peaks, precision further solidifies these 
results.

Validation was carried out over 2500 ECG cycles sampled 
across 25 subjects and different exercise conditions (rest, 
post-exercise, and recovery) in order to guarantee statistical 
robustness. However, the key distinction of the present 
algorithm is its real-time capability within LabVIEW and 
robustness under motion artifacts typical during exercise. 

Over a five-week period, the coefficient of variation (CV) 
for R-R interval detection stayed below 2.5%, highlighting 

the method’s reliability in managing intra- and inter-subject 
variability during stress testing induced by exercise.

The algorithm successfully facilitated downstream 
computations beyond R-peak detection, such as ensemble-
averaged waveform generation, composite ratio calculations 
(R-Q/ S-Q/ HR and T-Q/ R-Q/ HR), and HR variability (HRV) 
analysis. The algorithm’s functional reliability was indirectly 
confirmed by these derived metrics, which showed 
physiologically plausible trends throughout the intervention 
period and across exercise stages. 

Collectively, these validation results establish the 
LabVIEW-based framework as a reliable and efficient tool for 
real-time ECG monitoring and morphological trend analysis 
in exercise physiology studies.

Conclusion
This study presents a comprehensive, LabVIEW-based 
framework for analysing ECG responses to structured 
treadmill exercise over a five-week period. The methodology 
integrates real-time ECG acquisition, robust signal pre-
processing, morphological feature extraction, and 
novel composite ratio calculations to quantify cardiac 
electrophysiological adaptation.

The observed trends—such as the consistent increase 
in heart rate post-exercise, followed by effective recovery 
within five minutes—demonstrate physiological adaptability 
to controlled exercise stress. Notably, reductions in 
repolarization abnormalities, as evidenced by improved 
R-Q/ S-Q/ HR and T-Q/ R-Q/ HR ratios, point toward 
enhanced cardiac efficiency and autonomic regulation 
over time.

The algorithm for R-peak detection exhibited high 
sensitivity (93.2%), specificity (91.6%), and precision (92.4%), 
confirming the system’s accuracy and reliability for large-
scale ECG analysis. The implementation of ensemble 
averaging and amplitude variance tracking further enabled 
the detection of subtle waveform changes that may be 
overlooked in raw signals.

This framework holds promise for applications in 
personalized fitness monitoring, cardiac rehabilitation, 
and non-invasive early detection of electrophysiological 
dysfunctions. Future work may extend this model to diverse 
populations, include longer-term training interventions, or 
integrate additional physiological signals such as oxygen 
saturation or respiration rate.
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