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Analyzing cardiac physiology: ECG ensemble averaging
and morphological features under treadmill-induced stress in
LabVIEW

Dimpal Khambhati'*, Chirag Patel?

Abstract

This study uses a LabVIEW-based platform to analyze ECG signals in-depth in order to examine the long-term effects of exercise-induced
stress on cardiac function. About 25 human subjects participated in a standardized treadmill exercise program that was continued
until voluntary exertion. Blood pressure (BP) and heart rate (HR) were measured three times: while at rest, right after exercise, and five
minutes after recovery. To assess myocardial workload, the rate-pressure product (RPP) was computed at each stage.

Under all circumstances, continuous ECG data were recorded, and a specially created LabVIEW interface was used to analyze the
waveforms. Important morphological characteristics, such as intervals and segments, as well as P-wave, QRS complex, and T-wave
amplitudes, were extracted. R-R interval detection was used to segment each ECG cycle, and multiple cardiac cycles were aligned
before being averaged as a group. This method made precise morphological analysis possible by greatly improving R-peak clarity and
lowering noise.

R-peak amplitude, QRS duration stability, and T-wave morphology all showed steady improvements over the course of a five-week
observational period, suggesting improved cardiac efficiency and recovery adaptation. Waveform variability was significantly reduced,
according to amplitude variance analysis conducted before and after averaging. In order to evaluate repolarization abnormalities, derived
ratios like R-Q/S-Q/HR and T-Q/R-Q/HR were also examined; trends indicated that exercise conditioning caused normalized repolarization.
The signal processing approach demonstrated its dependability in ECG analysis with an overall feature detection accuracy of 90 to 93%.

Particularly in the contexts of cardiac rehabilitation, exercise physiology, and preventive cardiovascular screening, the suggested
methodology provides a reliable, non-invasive way to track changes in cardiac function. Its use could include ongoing health monitoring
in practical contexts and customized healthcare systems.

Keywords: ECG signal processing, LabVIEW, Treadmill exercise, Cardiac function, Rate pressure product, R-peak enhancement, Ensemble
averaging, Heart rate recovery, Biomedical signal analysis, Cardiac rehabilitation, Repolarization analysis, Amplitude variance.

Introduction is a muscular organ at the center of this system that uses

The preservation of physiological homeostasis is largely ~ complex mechanisms controlled by electrical, mechanical,

dependent on the human cardiovascular system. The heart ~ @nd metabolic pathways to dynamically adapt to physical
demands. Electrocardiography (ECG) is a basic method of

studying cardiac function and identifying abnormalities
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the P-wave, QRS complex, or T-wave are examples of how
any deviation in these events can show up as changed
waveform characteristics (Khambhati et al., 2021). Assessing
these alterations during physiological stress, like exercise,
offers important information about the heart’s capacity for
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Exercise affects cardiac physiology in both short-term and
long-term ways. In order to meet metabolic demands, it
acutely causes peripheral vasodilation, increased cardiac
output, and elevated HR. Regular aerobic exercise improves
myocardial efficiency, lowers resting heart rate, optimizes
autonomic balance, and increases stroke volume over the
long term. These modifications lower the risk of cardiac
events and enhance general cardiovascular health. In
controlled environments, treadmill exercise is especially
useful for triggering these cardiovascular reactions.

Notably, people who regularly work out on a dynamic
treadmill typically have better cardiac performance than
people who are sedentary. Regular exercisers showed
improved heart rate recovery, larger R-peak amplitudes,
and less ECG morphological variability. These patterns
show improved myocardial efficiency and autonomic
control. On the other hand, people who don’t follow a set
exercise routine frequently exhibit higher repolarization
irregularities, lower R-peak intensities, and delayed heart
rate normalization, all of which are signs of impaired cardiac
adaptability (Preejith et al., 2020).

Furthermore, the treadmill protocol’s structure is crucial
for cardiac evaluation. The Bruce Protocol, a clinically
validated multi-stage treadmill test in which the incline
and speed increase at predetermined three-minute
intervals, was used in this investigation. This incremental
design improves the consistency of workload assessment
across subjects and sessions by offering a progressive
and standardized cardiovascular challenge. It is simpler to
correlate ECG changes with particular workload thresholds
because of the consistent stress application provided by
the predictable increases in exertion (Rajalakshmi et al.,
2013). Conversely, irregular physiological loading brought
about by non-standard or haphazardly changed treadmill
routines can make it more difficult to interpret ECG readings
and obscure subtle signs of cardiac improvement. Thus,
the structured escalation of the Bruce Protocol makes it
possible to identify exercise-induced cardiac adaptation
and repolarization trends more precisely, providing a solid
basis for comparing cardiac responses within and between
subjects.

A clinically recognized technique for evaluating the
heart’s function under increased workload is the treadmill
stress test. It makes it possible to track blood pressure
dynamics, heart rate recovery, and ECG changes in real
time—all of which are important markers of cardiovascular
fitness. In order to assess the cardiac stress response and
recovery efficiency, ECG readings were obtained at rest,
right after exertion on a treadmill, and after a five-minute
recovery period.

The integration of blood pressure (BP), heart rate (HR),
and the rate-pressure product (RPP) is a crucial part of
this analysis. These metrics are crucial for evaluating the
workload and oxygen consumption of the heart at various

phases of the exercise regimen. The two main techniques for
measuring myocardial oxygen consumption and workload
are the Direct and Indirect Index.

The measurement of oxygen uptake in the coronary
arteries, which is frequently impractical for routine
clinical assessments, provides the most direct indication
of myocardial oxygen consumption. Nevertheless, the
metabolic demand and workload of the heart during
exertion can also be used to indirectly estimate myocardial
oxygen consumption (MVO2). The heart requires a lot of
energy, especially when exercising, when its workload rises
because of elevated heart rate and systolic blood pressure.
Anindirect but trustworthy indicator of myocardial oxygen
consumption is the RPP. The cardiac workload and oxygen
demand can be inferred from the RPP. It measures the
amount of stress the heart experiences during physical
activity and represents the effort the heart puts forth to
pump blood. RPP rises with exercise, indicating increased
myocardial oxygen consumption and workload, just as
HR and BP do. A decrease in RPP during recovery signifies
enhanced myocardial effectiveness and a reduction in
oxygen demand, whichis a crucial indicator of heart function
recovery (Thomas et al., 2019).

The longitudinal analysis of HR, BP, and RPP in this
study aids in determining how well the heart adjusts to and
recovers from the stress of treadmill exercise. Improved ECG
features and a low RPP during recovery may indicate that the
heartis functioning more effectively and needs less oxygen
to meet the same physiological demands (Wang et al., 2006).
When assessing cardiac function and adaptation in patients
undergoing rehabilitation or those participating in regular
aerobic exercise, these observations are especially crucial.

Advanced ECG analysis, however, requires more than
simple measurement and visual inspection. Particularly
during and after exercise, noise from movement, perspiration,
or equipment limitations frequently taints the raw signal. A
high-fidelity analytical platform is required for this. Because
of its robust graphical programming features, support for
real-time signal acquisition, and adaptable processing
modules, LabVIEW was chosen for this use. LabVIEW makes
it easier to automatically extractimportant ECG parameters
in addition to facilitating precise filtering and segmentation
(Zhang et al., 2002).

An innovative component of this study involves the
derivation and analysis of novel composite ratios, specifically
R-Q/S-Q/HR and T-Q/R-Q/HR, aimed at providing deeper
insights into repolarization dynamics and cardiac workload
adaptation. These ratios are grounded in a physiological
understanding of the cardiac cycle, particularly the timing
between ventricular depolarization and repolarization, and
how HR modulates these.

Normalized by heart rate, the R-Q/S-Q/HR ratio is
intended to measure the temporal relationship between the
R-Qand S-Qintervals. While the S-Q interval continues into



4537 LabVIEW-Based ECG Morphology Under Stress

the early repolarization phase, the R-Q interval records the
pre-peak conduction preceding the ventricular contraction
(Zhong et al., 2011). This ratio offers a time-adjusted
indicator of the shift from depolarization to repolarization
by accounting for HR. This is important because heart rate
affects the length of electrical phases and directly affects
myocardial oxygen demand. If heart rate is not controlled,
it can shorten repolarization at higher rates, which can
impair recovery.

The balance between the R-Q interval, which represents
ventricular excitation, and the T-Q interval, which represents
electrical diastole and ventricular repolarization, is also
examined by the T-Q/R-Q/HR ratio. After adjusting for
heart rate once more, this composite ratio provides an
indication of how well the heart moves from systole to
diastole and back. These intervals are dynamically but
proportionately modulated in a healthy heart under
exercise stress; deviations from this pattern may indicate
electrical instability, inadequate autonomic adaptation, or
latent pathologies like autonomic dysfunction or ischemia
(Wolthuis et al., 1979).

These ratios offer a normalized, non-invasive method
of evaluating repolarization abnormalities, an area that
is frequently overlooked in standard ECG interpretations.
Even though repolarization changes are small and
usually obscured by larger changes in the ST segment
or QRS complex, they are very useful for diagnosis.
This study intends to capture subtle trends in cardiac
electrophysiological adaptation, specifically improvements
in ventricular recovery times, autonomic regulation, and
oxygen utilization efficiency, by longitudinally monitoring
R-Q/S-Q/HR and T-Q/R-Q/HR over the course of a five-week
treadmill exercise program (Zhong et al., 2011).

Furthermore, the incorporation of these composite ratios
enables correlation with other workload indices such as
RPP, providing a multidimensional picture of how the heart
responds and adapts to consistent aerobic conditioning. The
combination of signal-level and functional indices allows for
arobust evaluation of cardiac health, supporting the broader
objective of this research—to enable early detection and
personalized monitoring of cardiovascular adaptation using
accessible, real-time biomedical tools like LabVIEW.

In order to determine the inter-subject variability and
adaptability to exercise-induced cardiac stress, this study
also looked at subject-specific responses over a number
of time points. For every morphological feature across
conditions, mean + SD values were computed, yielding
statistically significant trends in cardiac performance. The
algorithmic framework was validated by computing the
sensitivity, specificity, and precision of peak detection using
ground-truth annotations (Khambhati et al., 2019).

The use of ensemble averaging, which is implemented
in LabVIEW, is a novel feature of this study. Multiple ECG
cycles are aligned and averaged to greatly reduce sporadic

noise and reveal consistent patterns like R-peak amplitude
(Henriksson et al., 2019). High-resolution analysis of minute
waveform components that might otherwise go overlooked
is made possible by this averaging technique. The reliability
of identifying cardiac adaptation is increased by the capacity
to precisely analyze amplitude and segment variance.

This study provides a thorough framework for assessing
cardiac adaptation and recovery by concentrating on
morphological and functional cardiac metrics and how
they alter over the course of a structured training program.
The findings may find use in cardiac rehabilitation, fitness
tracking, and the early identification of electrophysiological
abnormalities.

Methodology

In order to assess changes in cardiac function over time, this
study used a systematic approach that combined advanced
ECG signal processing, standardized treadmill exercise,
and physiological data collection. Subject screening, Bruce
Protocol-based controlled exercise execution, multi-phase
data recording, and LabVIEW-based ECG signal analysis
comprised the core workflow. Using waveform-based
indices and composite metrics, the methodology was
created to measure both morphological and functional
improvements in cardiac activity.

To systematically implement this, a block diagram-
driven approach was developed, as illustrated in Figure 1.
The flow diagram outlines the complete process, from input
acquisition to feature extraction and evaluation, ensuring
traceable, repeatable, and scalable analysis.

Subject Screening

Treadmill Test ( Bruce Protoccol)

Data Acquisition at 3 Stages
(Rest, Post-Exercise, Recovery)

Analysis of HR, SBP and
Calculate RPP

ECG Signal Processing
using LabVIEW

ECG Feature Extraction and
Ensemble Averaging

Statistical Analysis

Figure 1: Flow chart of proposed system
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Subject Selection and Exercise Protocol

A total of twenty-five healthy adult participants (n = 25),
aged between 20 and 35 years, were selected for this
longitudinal exercise-based study. A comprehensive
pre-enrollment screening procedure was performed
on each participant to rule out any prior neurological,
metabolic, or cardiovascular disease conditions. Normal
blood pressure, a BMI between 18.5 and 29.9 kg/m?, and
the lack of prescription drugs that affect heart function
were among the requirements for inclusion. To preserve
uniformity in baseline cardiac adaptability, subjects who
had previously engaged in regular endurance training
were not included.

Each subject voluntarily participated after being
informed of the study protocol and signed a written consent
form, as approved by the institutional ethical committee.
Participants were enrolled in a structured five-week
treadmill exercise intervention conducted once weekly. The
treadmill protocol adopted was a modified Bruce Protocol, a
standardized cardiac stress testing method commonly used
in clinical evaluations. This protocol progressively increased
the treadmill speed and incline at fixed intervals (typically
every three minutes), providing a controlled and gradually
intensifying cardiovascular workload.

The exercise was continued until the participant
experienced volitional fatigue, which was indicated by
a rating of =17 on the Borg rating of perceived exertion
(RPE) scale, or earlier at the participant’s request. Accurate
physiological profiling was made possible while maintaining
participant safety thanks to this gradual and controlled
loading technique.

In addition to ECG and hemodynamic monitoring,
baseline physical and cardiovascular parameters were
recorded for each participant prior to the intervention
period.

These baseline traits were used as a point of comparison
when assessing how exercise affected cardiac function over
time. Understanding inter-subject physiological variations
in response to cardiovascular stress was also made possible
by the variability seen in HR and RPP values.

Data Acquisition

Cardiovascular and electrophysiological parameters were

recorded at three key time points during each weekly

session:

« Resting State: Five minutes prior to treadmill activity,
while the subject remained seated.

- Immediate Post-Exercise: Within 30 seconds of
cessation of treadmill activity.

« Recovery Phase: After five minutes of seated rest, post-
exercise.
A high-resolution ECG acquisition hardware system

set up in a typical three-lead Einthoven configuration was

Table 1: Anthropometric and hemodynamic profile of study subjects

(n=25)
Variables Mean + SD
No of Subjects 25
Gender (M/F) 11M, 14F
Age (years) 253+3.20
Weight (Kg) 62.1+5.15
Height (cm) 162.8 +5.34
BMI (kg/m?) 23.8+2.02
SBP (mmHg) 126.1+7.92
HR (BPM) 89.9 +10.05
RPP 11351.4 +£1234.87

used to collect the electrocardiographic data. In order to
maximize R-wave morphology and improve signal quality,
athree-lead ECG was simultaneously recorded using surface
electrodes arranged in Lead Il configuration (right arm to
left leg). To ensure high temporal fidelity, the ECG signals
were sampled at 1 kHz. Importantly, real-time streaming of
the raw ECG data into the LabVIEW environment was done
in order to calculate the instantaneous heart rate (HR) and
to store and segment the ECG signals for morphological
analysis at a later time.

A clinically validated digital sphygmomanometer was
used to measure systolic blood pressure (SBP), guaranteeing
consistent and repeatable readings throughout each
session. The RPP, which is defined as follows, was calculated
using these values (Zhong et al., 2011):

RPP = HR x SBP

RPP functions as a trustworthy but indirect measure of
cardiac workload and myocardial oxygen consumption
(MVO,). To measure cardiac demand and recovery
effectiveness, RPP values were assessed for each subject
under the three conditions of rest, immediately following
exercise, and recovery.

This seamless integration between hardware acquisition
and software processing enabled continuous monitoring of
cardiac electrical activity and eliminated post-processing
delays. The use of LabVIEW for signal analysis allowed for
automated data extraction, consistency in waveform feature
identification, and real-time feedback during each session.

The system was calibrated before each use to ensure
signal fidelity and accuracy. All sessions were conductedina
controlled gym environment with stable room temperature
and minimal external interference. Participants followed
strict pre-session guidelines, including refraining from
caffeine, alcohol, or intense physical activity for at least
12 hours prior to testing. These controls ensured data
consistency and reliability across the five-week period.
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ECG Signal Processing Using LabVIEW

The ECG data acquired in real-time were subjected to
an intricate signal processing workflow using LabVIEW,
ensuring a detailed and noise-minimized interpretation of
the cardiac cycles. Initially, raw ECG signals were imported
directly from the acquisition hardware and displayed as
unprocessed waveforms, reflecting all real-time cardiac
electrical activity along with baseline drift and motion
artifacts. These signals included both high-frequency noise
from muscle activity and low-frequency trends due to
respiration and electrode movement (Figure 2).

To address these challenges, a trend-removal step was
implemented where a bandpass filter (typically between
0.5 Hz and 40 Hz) was applied to eliminate slow drifts and
high-frequency disturbances. This resulted in a cleaner
signal that more accurately represented the physiological
cardiac waveform without introducing artificial distortion,
which is illustrated in Figure 3.

Following this, the denoised ECG was analyzed for
R-peak detection, which involved a combination of slope
analysis and threshold crossing methods embedded in
LabVIEW's algorithmic environment. Detected R-peaks
were marked (Figure 4) in the time series and subsequently
verified against manually annotated ground-truth ECG
datasets to ensure accuracy and minimize false positives.

Following peak validation, the signal was divided into
distinct cardiac cycles using R-R intervals. To allow for
comparative analysis, these cycles were realigned in time.
In order to observe waveform consistency and identify any
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Figure 5: Overlapped ECG cycles for morphological comparison

morphological changes, such as ST-segment elevation or
QRS complex broadening, under exercise-induced stress, it
was crucial to plot all of these cardiac cycles together (Figure
5) in an overlapping format.

The final step involved ensemble averaging, where
multiple aligned ECG cycles were averaged into a composite
waveform (Figure 6). This method effectively suppressed
random noise and emphasized consistent morphological
features like the P-wave onset, R-peak amplitude, and T-wave
slope. The ensemble-averaged waveform provided a reliable
representation of the cardiac signal at any specific time point

oo [T ]

averaging of ECG
1.2+

1

0.8

0.4
0.2

0 ™

-0.2

Smplitude

I
1
i
]
[

7] -

0.4 1
0 50 100 150 200 250 300 350 400
Time
Figure 6: Ensemble-averaged ECG Waveform




The Scientific Temper. Vol. 16, No. 7

Khambhati and Patel

4540

during the protocol.

Overall, this systematic and layered signal processing
approach from raw acquisition to Denoising, peak detection,
segmentation, overlapping analysis, and averaging enabled
robust and reproducible ECG interpretation. It laid the
foundation for identifying morphological trends linked to
cardiac efficiency, autonomic adaptation, and recovery post-
exercise across the five-week treadmill protocol.

Results and Discussion

This section presents detailed observations of ECG
morphological and hemodynamic adaptations to structured
treadmill exercise, followed by a comparative analysis with
previous studies to contextualize the findings.

Heart Rate and Rate Pressure Product (RPP) Trends
Figure 7 shows the mean HR trends for all subjects across
the three phases: resting, immediate post-exercise, and
recovery. The observed pattern of sharp post-exercise HR
elevation followed by a gradual decline during recovery
(Figure 7) is consistent with established exercise physiology
literature. Similar temporal trends were reported by Wang
et al. (2006), where trained individuals exhibited faster HR
recovery due to enhanced autonomic modulation.

Rate pressure product, a surrogate marker for myocardial
oxygen consumption, was calculated as HR x SBP. Figure
8 illustrates the RPP profile. Furthermore, the reduction in
RPP from Week 1 to 5 (Figure 8) mirrors findings by Nagpal
et al. (2007), who demonstrated that chronic aerobic
training reduces myocardial oxygen demand and improves
cardiac efficiency, particularly in hypertensive subjects. The
current study’s results not only confirm these physiological
adaptations but also provide a quantitative illustration of
improved cardiovascular efficiency over repeated exercise
sessions.

ECG Feature Extraction
The improvements in T-wave amplitude and reduction in
QT interval (Table 2) are indicative of enhanced ventricular

HR trends (Rest vs. Post-Exercise vs. Recovery)

Heart Rate [BPM]

Immediate after Exercise
HR

Resting HR Recovery HR

Phases of Exercise

Figure 7: Line graph showing HR trends (Rest vs. Post-Exercise vs.
Recovery)
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repolarization, which is a hallmark of positive cardiac
adaptation. Javorka et al. (2002), who showed that endurance
training significantly modifies repolarization parameters,
especially T-wave morphology and QT duration, support
these findings. Notably, in the current study, a consistent
increase in P-wave amplitude and a mild decrease in
QRS duration were observed, suggesting improved atrial
depolarization and ventricular conduction efficiency. Such
changes are also reported in Jelinek et al. (2015), validating
the physiological improvements observed.

Composite Ratio Analysis: Repolarization Indicators
To evaluate ventricular repolarization timing adaptations,
composite ratios such as R-Q/S-Q/HR and T-Q/ R-Q/ HR were
calculated across five weeks of exercise sessions (Figure 9).

This trend indicates improved electrical stability of the
myocardium under exercise-induced stress. Prior work by
Zhong et al. (2011) explored similar repolarization metrics
but over a shorter intervention span and fewer sessions.
Compared to their marginal changes, the current study
demonstrates more robust adaptations, likely due to the
structured and consistent exercise regime. Both ratios
showed a consistent and progressive decline over the study
period. Specifically, the R-Q/ S-Q/ HR ratio reduced from an
initial normalized value of 1.00 in Week 1 to 0.85 by Week
5, while the T-Q/ R-Q/ HR ratio declined from 1.00 to 0.83.

This notable decline suggests increased cardiac
adaptation to repeated exercise stress by indicating better
electrical stability and fewer repolarization abnormalities.
Theradar chart’s narrowing pattern confirms this coordinated
improvement in repolarization markers over time. This
steady trend emphasizes how structured treadmill exercise
improves the electrical remodelling of the heart and lessens
vulnerability to abnormal repolarization brought on by
exercise.

Table 2: Mean + SD ECG features across all subjects (Week 1 vs. 5)

Feature Week 1 (Mean +SD) ~ Week 5 (Mean + SD)
P-wave Amp (mV) 0.18 £ 0.02 0.21+0.01

QRS Duration (ms) 98+8 92+6

T-wave Amp (mV) 0.23+0.03 0.28 £ 0.02

QT Interval (ms) 420+ 15 41010
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Figure 9: Radar chart: Composite ratios over 5 weeks

Algorithm Validation

The performance of the custom-designed R-peak detection
algorithm implemented in the LabVIEW environment was
quantitatively validated using annotated ground-truth ECG
datasets. The algorithm demonstrated robust detection
capabilities, yielding the following performance metrics
(Table 3):

The R-peak detection algorithm exhibited high accuracy
with sensitivity, precision, and specificity, which aligns
well with benchmarks reported in the literature Wolthuis
et al., (1979). These metrics show a high level of accuracy
in identifying real cardiac events while reducing false
positives. The algorithm’s sensitivity indicates its capacity
to detect R-peaks accurately and without missing beats,
which is essential for precise heart rate (HR) computation
and morphological analysis that follows. The ability of
the method to prevent false-positive detections, which
guarantees that non-peak signals are not mistakenly
categorized as R-peaks, is indicated by the specificity. By
measuring the percentage of true positive detections
among all detected peaks, precision further solidifies these
results.

Validation was carried out over 2500 ECG cycles sampled
across 25 subjects and different exercise conditions (rest,
post-exercise, and recovery) in order to guarantee statistical
robustness. However, the key distinction of the present
algorithm is its real-time capability within LabVIEW and
robustness under motion artifacts typical during exercise.

Over a five-week period, the coefficient of variation (CV)
for R-R interval detection stayed below 2.5%, highlighting

Table 3: Performance metrics of R-peak detection algorithm

Metric Value (%)
Sensitivity 93.2
Precision 92.4
Specificity 91.6

the method’s reliability in managing intra- and inter-subject
variability during stress testing induced by exercise.

The algorithm successfully facilitated downstream
computations beyond R-peak detection, such as ensemble-
averaged waveform generation, composite ratio calculations
(R-Q/ S-Q/ HR and T-Q/ R-Q/ HR), and HR variability (HRV)
analysis. The algorithm’s functional reliability was indirectly
confirmed by these derived metrics, which showed
physiologically plausible trends throughout the intervention
period and across exercise stages.

Collectively, these validation results establish the
LabVIEW-based framework as a reliable and efficient tool for
real-time ECG monitoring and morphological trend analysis
in exercise physiology studies.

Conclusion

This study presents a comprehensive, LabVIEW-based
framework for analysing ECG responses to structured
treadmill exercise over a five-week period. The methodology
integrates real-time ECG acquisition, robust signal pre-
processing, morphological feature extraction, and
novel composite ratio calculations to quantify cardiac
electrophysiological adaptation.

The observed trends—such as the consistent increase
in heart rate post-exercise, followed by effective recovery
within five minutes—demonstrate physiological adaptability
to controlled exercise stress. Notably, reductions in
repolarization abnormalities, as evidenced by improved
R-Q/ S-Q/ HR and T-Q/ R-Q/ HR ratios, point toward
enhanced cardiac efficiency and autonomic regulation
over time.

The algorithm for R-peak detection exhibited high
sensitivity (93.2%), specificity (91.6%), and precision (92.4%),
confirming the system’s accuracy and reliability for large-
scale ECG analysis. The implementation of ensemble
averaging and amplitude variance tracking further enabled
the detection of subtle waveform changes that may be
overlooked in raw signals.

This framework holds promise for applications in
personalized fitness monitoring, cardiac rehabilitation,
and non-invasive early detection of electrophysiological
dysfunctions. Future work may extend this model to diverse
populations, include longer-term training interventions, or
integrate additional physiological signals such as oxygen
saturation or respiration rate.
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