Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach
Downloads
Published
Keywords:
Cardiovascular disease, Deep Learning, LRNN-LSTM, decision tree, XGBoost Ensemble, Voting-based Feature SelectionDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cardiovascular disease (CVD) causes the heart and blood vessels to fail, often resulting in death or stroke. Therefore, early automatic identification of CVD can rescue many lives. CVD identification and prognosis are essential clinical tasks to ensure precise classification results, which assist cardiologists in providing suitable patient treatment. The use of Deep Learning (DL) in the medical field is increasing as it can determine patterns in data. Despite that, CVD prediction is a profound challenge in clinical data analysis. Conventional methods cannot handle hidden patterns, leading to less accurate model predictions. There is a critical need for a new technique that can rapidly and reliably predict future outcomes in patients with CVD. To combat this issue, this research uses a benchmark dataset to present a Lightweight Recurrent Neural Network with a Long Short Term Memory (LRNN-LSTM) method for CVD. Initially, the Min-Max Batch Normalization (M2BN) method is used to verify the ideal margin of collected data values in the dataset. Secondly, they employed the Decision Tree (DT) technique to select the best gain attribute for predicting CVD. Furthermore, the XGBoost Ensemble Voting-based Feature Selection (XGB-EVFS) method determines the profound features of CVD. Then, our proposed LRNN-LSTM algorithm is used to categorize the CVD result to reduce misdiagnosis. The proposed system will develop a model that can accurately predict CVD to decrease mortality from cardiac disease. Therefore, the experiment analysis produces high classification accuracy, precision, and recall with fewer false scores than traditional methods.Abstract
How to Cite
Downloads
Similar Articles
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- V. Seethala Devi, N. Vanjulavalli, K. Sujith, R. Surendiran, A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Aasha, R. Sugumar, Lightweight Feature Selection Method using Quantum Statistical Ranking and Hybrid Beetle-Bat Optimization for Smart Farming , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Bommaiah Boya, Premara Devaraju, Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Merlin Sofia S, D. Ravindran, G. Arockia Sahaya Sheela, Clean Balance-Ensemble CHD: A Balanced Ensemble Learning Framework for Accurate Coronary Heart Disease Prediction , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- K. Fathima, A. R. Mohamed Shanavas, TALEX: Transformer-Attention-Led EXplainable Feature Selection for Sentiment Classification , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Shaik Abdulla P., Abdul Razak T., Retrieval-Based Inception V3-Net Algorithm and Invariant Data Classification using Enhanced Deep Belief Networks for Content-Based Image Retrieval , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Thangatharani T, M. Subalakshmi, Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

