Distributed SDN control for IoT networks: A federated meta reinforcement learning solution for load balancing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.6.12Keywords:
Internet of Things, Load Balancing, SDN-IoT, QoS, Software Defined Networking, Proximal Policy OptimizationDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The growth of Internet of Things devices and their uses have introduced ample challenges in handling dynamic and heterogeneous traffic patterns. This also has affected the area of Software Defined Networking (SDN). The key parameters like scalability, latency and resilience are the concerns in centralized SDN approach, especially in the case of large-scale IoT deployments. This research introduces a new method, Distributed SDN Control for IoT networks: A Federated Meta Reinforcement Learning Solution for Load Balancing. This method combines Federated Learning (FL) with the key features of Meta Reinforcement Learning (Meta-RL) to enable intelligent and privacy preserving load balancing across distributed SDN controllers. The system functions in two phases. In the first phase, traffic distribution models across are trained with FL without sharing raw data. Security is added to this by differential privacy and Byzantineresilient aggregation. In the second phase, fast adaptation to non-stationary traffic patterns is achieved using Meta-Learning and Proximal Policy Optimization (PPO). The performance evaluations show that theAbstract
How to Cite
Downloads
Similar Articles
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R. Sridevi, V. S. J. Prakash, Load aware active low energy adaptive clustering hierarchy for IoT-WSN , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- V. Infine Sinduja, P. Joesph Charles, A hybrid approach using attention bidirectional gated recurrent unit and weight-adaptive sparrow search optimization for cloud load balancing , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- M. Deepika, I Antonitte Vinoline, Optimization of an Advanced Integrated Inventory Model Considering Shortages and Deterioration across Varying Demand Functions , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- D. Prabakar, Santhosh Kumar D.R., R.S. Kumar, Chitra M., Somasundaram K., S.D.P. Ragavendiran, Narayan K. Vyas, Task offloading and trajectory control techniques in unmanned aerial vehicles with Internet of Things – An exhaustive review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R.R. Jenifer, V.S.J. Prakash, Detecting denial of sleep attacks by analysis of wireless sensor networks and the Internet of Things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Chandrasekaran M, Rajesh P K, Optimization of cost to customer of power train in commercial vehicle using knapsack dynamic programming influenced by vehicle IoT data , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- R. Rita Jenifer, V. Sinthu Janita, Energy-aware Security Optimized Elliptic Curve Digital Signature Algorithm for Universal IoT Networks , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- M. Ragul, A. Aloysius, V. Arul Kumar, Enhancing IoT blockchain scalability through the eepos consensus algorithm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Yasodha V, V. Sinthu Janita, AI-driven IoT routing: A hybrid deep reinforcement learning and shrike optimization framework for energy-efficient communication , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
You may also start an advanced similarity search for this article.

