Distributed SDN control for IoT networks: A federated meta reinforcement learning solution for load balancing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.6.12Keywords:
Internet of Things, Load Balancing, SDN-IoT, QoS, Software Defined Networking, Proximal Policy OptimizationDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The growth of Internet of Things devices and their uses have introduced ample challenges in handling dynamic and heterogeneous traffic patterns. This also has affected the area of Software Defined Networking (SDN). The key parameters like scalability, latency and resilience are the concerns in centralized SDN approach, especially in the case of large-scale IoT deployments. This research introduces a new method, Distributed SDN Control for IoT networks: A Federated Meta Reinforcement Learning Solution for Load Balancing. This method combines Federated Learning (FL) with the key features of Meta Reinforcement Learning (Meta-RL) to enable intelligent and privacy preserving load balancing across distributed SDN controllers. The system functions in two phases. In the first phase, traffic distribution models across are trained with FL without sharing raw data. Security is added to this by differential privacy and Byzantineresilient aggregation. In the second phase, fast adaptation to non-stationary traffic patterns is achieved using Meta-Learning and Proximal Policy Optimization (PPO). The performance evaluations show that theAbstract
How to Cite
Downloads
Similar Articles
- Neeraj ., Anita Singhrova, Quantum Key Distribution-based Techniques in IoT , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Aasha, R. Sugumar, Lightweight Feature Selection Method using Quantum Statistical Ranking and Hybrid Beetle-Bat Optimization for Smart Farming , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Rajeev P. R., K. Aravinthan, A novel approach for metrics-based software defect prediction using genetic algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- K. Akila, Location-specific trusted third-party authentication model for environment monitoring using internet of things and an enhancement of quality of service , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R. Sakthiraman, L. Arockiam, RRFSE: RNN biased random forest and SVM ensemble for RPL DDoS in IoT-WSN environment , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Priscilla I, Jayasimman Lawrence, Enhanced Symmetric Cryptography Technique (ESCTGPU) for Secure Communication between the IoT Gateway and the public Cloud Environment , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Lakshmi Priya, Anil Vasoya, C. Boopathi, Muthukumar Marappan, Evaluating dynamics, security, and performance metrics for smart manufacturing , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Kavitha V, Panneer Arokiaraj S., RPL-eSOA: Enhancing IoT network sustainability with RPL and enhanced sandpiper optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Optimizing IoT application deployment with fog - cloud paradigm: A resource-aware approach , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

